LogicWeb: Enhancing the Web with Logic Programming

Andrew Davison Seng Wai Loke
Dept. of Computer Engineering Dept. of Computer Science
Prince of Songkla University University of Melbourne
Hat Yai, Songkhla 90112, Thailand Parkville, Victoria 3052, Australia
Email: ad@ratree.psu.ac.th Email: swloke@cs.mu.oz.au

December 23rd, 1996

Abstract

LogicWeb 1s a client-side logic programming tool for the World Wide Web, which
allows the Web to be viewed in a more abstract way: Web pages can be rephrased
as logic programming modules, and hypertext links as relationships between the
modules.

This abstraction makes LogicWeb particularly suitable for coding important classes
of applications, and this paper considers two in some detail: Web search, and the
structuring of Web information using deductive databases.

LogicWeb illustrates that logic programming possesses many advantages for writ-
ing Web applications, including the simple representation of information (e.g. as
deductive databases or as logic grammars), the ability to write meta-level descrip-
tions (e.g. of pages and the connections between pages), and the encoding of rules
and heuristics necessary for “intelligent” behaviour.

www.manaraa.com

1 Introduction

The World Wide Web’s popularity derives from its support for the global publication of
pages which contain graphics, sound, animations, 31 images, and so on. The Web is also an
excellent information source, made accessible through numerous search engines.

A drawback of basic Web pages is their limited executable behaviour, which is essentially
restricted to clicking on hypertext links. This has been addressed by two classes of program-
ming extensions, one based on server-side evaluation, the other on client-side computation.

Server-side evaluation typically involves the user in completing a form on their browser,
which is submitted across the network to a Web server to be processed. The most widespread
server-side evaluation mechanism is the Common Gateway Tnterface (CGT) which delivers
form details to programs, and routes any outpuf from the code back to the user [Davison
1995].

One disadvantage of server-side programming is the difficulty of extending the user in-
terface. For instance, it 1s not possible to intercept the activation of a hypertext link or to
augment the forms interface with additional GUT elements. Also, since server-side scripts are
usually located on different machines from the forms which use them, communication latency
can be a problem. A further drawback is the load on the server caused by multiple clients
running scripts.

The other kind of Web programming evaluates code on the client-side (i.e. on the user’s
browser). Two well-known languages of this type are JavaScript [Reynolds and Wooldridge
1996] and Java [LLemay and Perkins 1996]. The client-side approach allows programs to utilise
a wider variety of browser features than server-side scripts, thereby increasing the possible
types of user interaction. For instance, Java comes with a rich set of GUT class libraries,
and JavaScript can access the browser’s history list of recently retrieved pages. Typically,
client-side code 18 downloaded with the page that uses i1t, and so network characteristics will
not affect the program’s execution.

A drawback of many client-side languages 1s their complexity. For example, Java sup-
ports the typical features of an imperative object oriented language (although it has removed
pointers). This means that the representation of structured information, as found in data-
bases for instance, involves the manipulation of an assortment of data structures. Also, these
language offer little support for meta-level information, such as descriptions of pages and the
relationships between pages. These capabilities are extremely useful for a diverse class of Web
applications, including search and data mining.

Security is an issue with client-side programming since it relies on code being moved from
a foreign host to be executed locally. Java has a number of interesting security features,
but they can make it difficult to do common tasks such as file manipulation and Web page
retrieval [LLemay and Perkins 1996].

There are two main aims of our work. The first is to utilise Logic Programming (LP) as
a way of viewing the Web more abstractly than just as pages connected by hypertext links.
Our TLogicWeb system allows the Web to be manipulated as a collection of T.P modules,
which can be interrelated using familiar TP techniques [Loke and Davison 1996]. This view is
not simply a pleasing abstraction, but is essential as a framework for writing Web programs
that manipulate structured information or carry out meta-level reasoning.

The second aim is to investigate the use of P as a client-side programming tool for the
Web. The client-side approach 1s utilised because it offers the opportunity to provide novel
forms of user interaction while avoiding network problems.

LogicWeb is introduced in section 2. Section 3 examines how Web search tools can be
developed using LogicWeb, with an emphasis on the representation of search heuristics. Sec-
tion 4 considers how structured Web information can be encoded as lightweight deductive

www.manaraa.com

databases. The implementation of LogicWeb is outlined in section 5. Other approaches to
using LP with the Web are described in section 6. Section 7 contains a summary of the main
points of this work, and some possible directions for future research.

The material presented here is an expansion of work reported in [l.oke and Davison 1996;
T.oke et al. 1996a; Loke et al. 1996b]. These papers can be found at
http://www.cs.mu.oz.au/~swloke/logicweb.html.

2 What is LogicWeb?

2.1 LogicWeb Overview

A simple view of the Web 1s as a collection of pages connected by hypertext links. A fragment
might look like Figure 1. We shall make the assumption that every page has a unique address
(its URL). Tn fact, there are exceptions to this, such as when a page is dynamically created
by a CGI script.

URL1
URL2
Web Page
Web Page
links
URL4
Web Page

URL3

Web Page

Figure 1: Web Pages connected by Hypertext links.

The TogicWeb view extends pages to become I.P modules, and allows link connectivity to
be augmented with LP relationships. The previous fragment could be viewed by LogicWeb
as in Figure 2. Each module still contains the text of the Web pages, but now extended with
I.P code. How this combination 1s achieved is described below.

Another change of perspective is to label each module with an TD (e.g. mod1, mod2 in
Figure 2). The requirement is that each TD is unique, and TogicWeb achieves this by using
the page’s URL.

A module TD is represented by a term at the P level, and so modules become amenable
to meta-level reasoning. For instance, the fact:

is_a_summary_of (mod1, mod2).

specifies that mod1 is a summary of mod2. This could be used by an on-line book previewer
to direct the browser from a summary page (in mod1) to a more detailed page (in mod2), or to
guide the browser from the details to the summary. Such facts (and rules) play an important
role in I.P-based Web search engines, as described in section 3.

www.manaraa.com

mod1

mod?2
veb Page t—0 |
+ LP code Web Page
] + LP code
mod4 relations
Web Page
+ LP code | mod3
Web Page
+ LP code

Figure 2: LogicWeb Modules connected by P relationships.

LogicWeb is a client-side I.P system, which is conceptually between the user’s browser and
the Web as shown in Figure 3.

Client-side Il The Web

get get

page page
(browser T 1 Logicueb
return '
|

page
L]

User

module
store

[]

Figure 3: A Stylised Overview of the LogicWeb System.

Figure 3 illustrates (in a stylised form) how TogicWeb supports the T.P abstraction of the
Web. When a Web page is retrieved, it is displayed by the browser as normally. However, the
page is also converted into a module and stored on the client-side. A downloaded page/module
18 a copy of the original page on the Web, which becomes significant when state change is
considered.

The presence of LogicWeb between the browser and the Web means that it can interpret
the user’s input. For instance, LogicWeb can convert a click on a hypertext link into a
goal. This conversion allows programmers to write code which extends the meaning of a click

www.manaraa.com

beyond page retrieval.
LogicWeb converts all retrieved pages into modules, including those with no additional
ILP code. The basic transformation generates two facts for each Web page:

my_id (""URL").
h_text("Page text').

my_id/1 holds the module’s TD which is its URI., while h_text/1 contains the complete text
of the Web page (including its HTMT. tags) as a string. my_id/1 allows the module to refer
to itself. An example is when a program must determine if its module TD 18 different from
that of another.

LogicWeb also parses each page looking for link information so that a 1ink/2 predicate
can be generated. For instance, the line:

I like beer making.
becomes:
link("beer making", "http://www.prost.org/beermake.html").

LogicWeb can also generate facts about the page structure, including a title/1 fact and
similar information about section, sub-section, and other headings.

We have still not determined what constitutes a useful set of automatically generated
predicates, but such predicates can be readily created by the programmer by calling built-in
parsing utilities.

ILP code appears on a page inside a <lw_code>...</1lw_code> container. For instance,
the following could be part of my home page:

<lw_code>
interests(["Logic Programming', "AI', "Web'", '00P"]).

related("logic", "Logic Programming').
related("agents', "AI").

useful_pages('Logic Programming",
["http://www-1lp.doc.ic.ac.uk/",
"http://wuw.cs.mu.oz.au/"ad/alp/archive.html"]).

interested_in(X) :-
interests(Is), member(X, Is).
interested_in(X) :-
related(X,Y), interested_in(Y).
</1lw_code>

Typically, such code appears inside a <pre>...</pre> container so that is uninterpreted
by the browser.

The facts and rules in the example illustrate the kinds of Web information that can be
represented. The interests/1 and related/2 facts give details about the author of the
page in a structured form that can be readily processed. The useful pages/2 fact could be
employed by a search engine looking for L.P information, or for details on logic (by using the
appropriate related/2 fact). The interested_in/1 rules show how page information can he
inferred.

www.manaraa.com

Once a LogicWeb module has been downloaded, 1t 1s queried via a forms interface, which is
added to its corresponding page before it is passed to the browser. Alternatively, a L.ogicWeb
input form may already have been added to the page by its author.

The LP language utilised by LogicWeb is a fairly elementary Edinburgh-style Prolog with
some additional module operators. The main operator applies a goal to a module specified
by its module TD (i.e. its URL):

m_id (URL)#>Goal.

Tf the module is not present in the module store (see Figure 3) then its page will be
downloaded and transformed into a LogicWeb module before the query is evaluated. However,
if the module is already in the store then the goal is executed immediately. Thus, the “#>”
operator permits the programmer to think of Web computation as goals applied to modules,
with no need for explicit Web page retrieval or parsing.

LogicWeb contains a number of module composition operators, inspired by work on struc-
tured LP [Brogi et al. 1994a; Bugliesi et al. 1994], and contextual LP [Monteiro and Porto
1989], such as the union operator:

1w_union(ListofModuleIDS)#>Goal.

This creates the clause-wise union of the modules for the duration of the goal evaluation. See
section 4.3 for an example.

LogicWeb is not alone in adding more machine-processable semantic content to pages. The
recently proposed HTMT, 3.2 standard [HTMT. 3.2 1996] contains tags for meta-information
based around name-value pairs. HTMTL links can also be classified by using attributes. In
addition, [Luke et al. 1996] has proposed new HTMT. tags for incorporating ontology-based
knowledge into pages, in the form of IS-A class hierarchies and instance-instance relationships.
For example, a subsection can be related to another page by a named relationship.

2.2 Examples of LogicWeb Use

Both of the examples in this section are simple search utilities; more complicated search tools
will be developed in section 3.
The first example finds a similar page given a starting URI. The query:

?7- similar_pg("http://www.cs.mu.oz.au/"ad", P).
will try to bind P to a URIL which is similar to the given address. similar _pg/2 is defined as:

similar_pg(CurrURL, SimilarURL) :-
m_id(CurrURL)#>interested_in(Topic),
m_id(CurrURL)#>1ink(Topic, SimilarURL).

The program obtains an interested_in/1 topic from the given page and uses it to select a
link leaving that page. The evaluation of the query will probably involve backtracking as it
is unlikely that every topic of interest has an associated link.

A serious drawback of this code 1s that it assumes the page contains interested_in/1 and
1link/2 facts. Tt will have the latter, since they are generated automatically (unless there are
no links leaving the page). Tt is less certain that there will be an interested_in/1 predicate.
This can be remedied by including an extra clause in similar_pg/2 which analyses the page
using the h_text/1 string.

The second example uses the h_text/1 approach to find a page relevant to a given subject
and starting page. The query:

www.manaraa.com

?7- relevant_pg('Logic Programming", "http://www.cs.mu.oz.au/"ad", P).

will bind P to a URIL which 1s related to logic programming and linked to the specified page.
relevant pg/3 is defined as:

relevant_pg(Subject, CurrURL, URL) :-
m_id (CurrURL)#>1ink(_, URL),
m_id (URL)#>h_text (Source),
contains(Source, Subject).

relevant pg/3 selects a link without concerning itself about the anchor. The text of the
retrieved page i1s passed to the LogicWeb built-in contains/2 to see if 1t contains the sub-
ject string. relevant pg/3 only relies on the predicates automatically added to modules by
LogicWeb, and so should be more robust than similar pg/2.

A weakness of the current LogicWeb implementation is the lack of backtracking at the
top-level of query evaluation: once an answer has been returned to the user it is not possible
to backtrack into the computation. For that reason, the usual LogicWeb coding style for
multiple answers is to embed the top-level query in a setof/3 call, such as:

?7- setof (P, relevant_pg("Logic Programming",
"http://wuw.cs.mu.oz.au/"ad", P), Ps).

An answer is returned to the user as a complete Web page whose formatting can be left
to the TLogicWeb system, or can be specified by built-in predicates as part of a program.

2.3 LogicWeb Modules

The TogicWeb module mechanism 1is fairly unsophisticated. A module can employ two no-
tions of visibility, specified as facts. The visible/1 predicate states the predicates which can
be utilised by a user from a form (e.g. visible(interested_in/l)). The export/1 predicate
states those predicates which can be utilised by other modules (e.g. export(interested_in/l)).
A combination of these allows varying degrees of visibility. For instance, an exported predicate
which 1s not visible is similar to a protected C++ member function.

More work needs to be done on the module system, perhaps to bring 1t into line with the
proposed TSO Prolog module standard [Hodgson 1996].

State 1s crucial to most Web applications, and LogicWeb currently supports one of the
two possible update mechanisms. LogicWeb programs can use: assert(m_id(URL), Clause)
and retract(m_id(URL), Clause) to update the modules stored on the client-side. However,
these are only copies of the original Web pages. Thus, once the current session finishes, the
state changes will be lost. This drawback can be coded around by the use of files on the client-
side which exist beyond the session. However, this still excludes applications which might want
to use the original module’s state as global data or a communications link. Changing this
state is complicated by security concerns: Web administrators are reluctant to allow programs
on their machines to be altered over the Internet.

3 Search

3.1 Limitations of Search Engines

The Web allows readers to browse related information with ease, but the Web is too large
to be searched by manual browsing alone. This has led to a proliferation of search engines

www.manaraa.com

which use keywords to search indexes (e.g. Lycos, AltaVista). These indexes are generated
by repeated off-line traversals over the Web.

Although these engines do a good job currently, they will become increasingly less accurate
as the size of the Web increases. For instance, 1t will become ever harder to keep the indexes
up-to-date, since it may take several weeks for a new site to be discovered, or for a changed
page to be revisited. Pages may also be deleted or moved, making their index entries incorrect
for a long period.

A related problem will be the size of the indexes, which will become unmanageably large
as the Web continues to grow.

One solution will be to limit the indexes to “important” items, such as home pages and
corporate sites. This will give rise to search tools which are tuned for specific domains, a
trend which is already occurring'. A problem with these specialised engines is that several
may need to be employed before a good answer is found, especially if the search item 1s
difficult to categorise.

Fven at the moment, search engines can return poor results if the item being looked for
is hard to define using keywords. For instance, looking for pages containing paper citations
1s difficult to specify due to the variety of ways of describing a citation. Moreover, as noted
in [Luke et al. 1996], keyword searches are based only on lexical or syntactic content. This
means that the search results are very sensitive to the choice of words used in the queries. If
a document is indexed on a synonym of the query keyword, then the document will not be
retrieved. Tn addition, a word often has different meanings causing redundant information to
appear in the results.

3.2 LogicWeb for Searching

Searching the Web is one of the main application areas for LP. This is not due to the depth-
first, backtracking behaviour of many LP languages, which is actually a disadvantage due
to the numerous loops in the Web’s topology. The important I.P features are the ability to
specify search heuristics using meta-level techniques, and to code specialised forms of search,
such as breadth-first or resource-bounded. These approaches are possible in L.ogicWeb because
module TDs and the text of Web pages are first class entities.

In section 3.3, a simple heuristic-free search tool is developed which illustrates many of the
coding techniques for Web search applications. Section 3.4 describes page type hierarchies,
which are a way of describing the structure of the sites being searched. Tn section 3.5, a page
type hierarchy 1s used to add heuristics to the search tool of section 3.3. Section 3.6 discusses
a bounded breadth-first search utility, and section 3.7 explains how LogicWeb can be utilised
alongside existing search engines.

3.3 Heuristic-free Search

find_ctt/3 uses a list of keywords and a starting URL to look for citations. A typical call 1s:

?- find_ctt(["Web, '"Logic Programming'],
"http://wuw.cs.mu.oz.au/"ad", Citation).

Hopefully, Citation will be bound to a citation containing the two keywords. find ctt/3
is defined as:

find_ctt(Keys, URL, Ctt) :-
m_id (URL)#>h_text (Source),

TSee http://home.netscape.com/escapes/search/special guides.html.

www.manaraa.com

contains_ctt(Keys, Source),

extract_ctt(Keys, Source, Ctt).
find_ctt(Keys, URL, Ctt) :-

m_id (URL)#>1ink(_, NxtURL),

find_ctt(Keys, NxtURL, Ctt).

The first clause checks whether the text of the page at URIL contains all the keywords by
calling contains_ctt/2. If the goal succeeds, the citation 1s extracted from the page with
extract_ctt/3.

The second clause is called when the contains_ctt/2 goal fails. A link is chosen from the
page, and followed by recursively calling find_ctt/3. This strategy relies on backtracking to
return to the current page if the choice is unrewarded.

contains_ctt/2 checks every key against the page by calling the built-in contains/2:

contains_ctt([], _).

contains_ctt([Key|Ks], Source) :-
contains(Source, Key),
contains_ctt(Ks, Source).

The main weakness of this code is the way that find_ctt/3 blindly follows links in a
depth-first manner. A link may go to the top of the same page or to a distantly related page
at a different site. Search heuristics, such as those based on page type hierarchies, are needed
to avoid these problems.

3.4 Page Type Hierarchies

A page type hierarchy is a way of describing a class of Web sites (e.g. academic department
Web sites, on-line newsletters, financial information pages) using relationships between cat-
egories of pages. Page type hierarchies concentrate on the organisation of semantic content
at related Web sites instead of on the textual information at any given site. The benefit of
this approach is that a hierarchy can be used as a general purpose “map” of any site which
falls into the class that the hierarchy represents.

For instance, our study of computing department Web sites suggested that they usually
contain pages of departmental information, research details, projects, project members, and
researchers. These page types can be labelled as dept, research, project, proj members
and researcher. Also, these types are related in a fairly standard way: a dept page is at
the top of the departmental web site, with the successive page types further down through
the site hierarchy. One page 1s further down the hierarchy than another page if the chain of
hypertext links from the starting page to that page is longer.

The ordering of the page types can be captured with composed of/2:

composed_of (dept, research).
composed_of (research, project).
composed_of (project, proj_members).
composed_of(proj_members, researcher).

composed_of/2 defines a general relationship, which will not hold in all cases. However,
it 1s still a useful sketch of the typical hierarchy of a computing department’s Web site. Tt
can be drawn as in Figure 4.

One subtlety of Figure 4 is that the lines joining the page types (which correspond to a
composed_of/2 fact) will not usually map to a single hypertext link. For example, several
link dereferences may be required to get from a department page to a research page.

Other hierarchies can be developed, which emphasize different aspects of the site, such as:

www.manaraa.com

research

project
proj members

researcher

Figure 4: A Computing Department Page Type Hierarchy.

composed_of (X, Y) :-
has_part(X, Y).
composed_of (X, Z) :-
has_part(X, Y), composed_of(Y, Z).

has_part(section(prog_langs), group(decl_langs)).
has_part(group(decl_langs), project(mercury)).
has_part(group(decl_langs), project(lygon)).
has_part(section(prog_langs), project(lp_techniques)).

The page types are the terms section/1, group/1, and project/1, which are parameterized
with the section, group, or project names.

3.5 Heuristic Guided Search

find_ctt/3 of section 3.1 can now be rephrased to use a page type hierarchy for CS depart-
ment, sites, as well as some other heuristics. A query is formulated as before:

?- find_ctt2(["Web, "Logic Programming"],
"http://wuw.cs.mu.oz.au/"ad", Citation).

The new parts of find_ctt2/3 are commented:

find_ctt2(Xeys, URL, Ctt) :-
likely_page(URL), % *new*
m_id (URL)#>h_text (Source),
contains_ctt(Keys, Source),
extract_ctt(Keys, Source, Ctt).
find_ctt2(Xeys, URL, Ctt) :-
m_id (URL)#>1ink(_, NxtURL),

www.manaraa.com

extension_of (NxtURL, URL), % *new*
pt_related (URL, NxtURL), % *new*
find_ctt2(Keys, NxtURL, Ctt).

The first clause uses likely page/1 to test whether the page belongs to a page type
which 1is likely to contain a citation. For example, a researcher page is very likely to hold a
citation. likely _page/1’s definition is:

likely_page(URL) :-
m_id (URL)#>page_type(PT),
is_ctt_pt(PT).

is_ctt_pt/1checks ifthe page type PT is one that might contain a citation. The page_type/1
goal may be evaluated against an actual predicate in the module, or by resorting to an ex-
amination of keywords in the page’s text.

The second clause of find_ctt2/3 employs a simple syntactic check in extension_of/2
to determine if NxtURL has an address derived from URL. For instance,
http://www.cs.mu.oz.au/~ad/papers.htmlextends http://www.cs.mu.oz.au/~ad. Also,
pt_related/2 orders the two pages by comparing their page types to decide if the page type
of NxtURL is nearer to the researcher pages where citations are most likely to be located.

pt_related(URL, NxtURL) :-
m_id (URL)#>page_type(PT),
m_id (NxtURL)#>page_type (NPT),
composed_of (PT, NPT).

composed_of /2 accesses a page type hierarchy like the ones described in section 3.2.
However, it will be more complex due to the need to accept pages which are not of an
interesting kind but may lead to an interesting page type. In addition, composed_of/2 must
recognise “bad” page types so that poor search paths can be eliminated. For instance, subtrees
related to course content can be ignored when looking for citations.

3.6 Resource-bounded Breadth-first Search

The following bounded breadth-first search program shows how other types of search strategies
can be readily encoded in LogicWeb. This code will also be used as a basis for talking about
search accuracy, and how the unpredictable nature of the Web can be accommodated.

The top-level query 1is:

?7- collect(["http://wuw.cs.mu.oz.au/"ad"], ["logic'", "AI", "Web"], 3, 20,
[1, Ps).

The first argument is a list of starting addresses. Each page will be scored using a score_page/3
predicate which utilises the keywords in the second list. Tf a score greater than 3 (the third
argument value) is obtained, then the page’s links are collected and subsequently searched.
All the collected pages are stored 1n a list which 1s eventually returned in Ps. The search
stops when 20 suitable pages (the fourth argument value) have heen found, or there are no
more URLs to explore.

collect/6 is defined as:

collect(_, _, _, Max, Ps, Ps) :— % got enough addresses
length(Ps, Len), Len >= Max.
collect([1, _, _, _, Ps, Ps). % no more URLs to examine
10

www.manaraa.com

collect([URL|ToVisit], Keys, PScore, Max, Ps, FPs) :-
m_id (URL)#>h_text (Text),
score_page(Keys, Text, Score),
act_score(Score, URL, ToVisit, Keys, PScore, Max, Ps, FPs).

collect/6 can terminate either when Max pages have been collected or when the URLs in
the ToVisit list have been exhausted. Otherwise, score_page/3 is used to get a score for the
page, which 1s acted upon by act_score/8:

act_score(Score, CurrURL, ToVisit, Keys, PScore, Max, Ps, FPs) :-
Score > PScore,
setof (URL, [Label] "m_id(CurrURL)#>1ink(Label,URL), URLs), % get links
append(ToVisit, URLs, ToVisitil), % store
collect(ToVisitl, Keys, PScore, Max, [URL|Ps], FPs).

act_score(Score, _, ToVisit, Keys, PScore, Max, Ps, FPs) :-
Score =< PScore,
collect(ToVisit, Keys, PScore, Max, Ps, FPs).

act_score/8 actions depend on whether the page score is higher than the pass score (PScore).
If it 18 higher then the page’s links are appended to the end of the ToVisit list and the
collection process continues. By appending to the end, a breadth-first search is maintained.
If the append/3 call was:

append (URLs, ToVisit, ToVisitil)

then a depth-first search would be carried out.

The second clause of act_score/8 discards the page since its score is too low, and then
continues with the collection.

collect/6 illustrates how various search strategies can be easily programmed because
module TDs and the text of Web pages are first class entities.

The accuracy of the search can be increased by utilising structured information in the
visited pages. For instance, if we assume that Web pages generally contain interests/1,
related/2, and the other predicates in the section 2.1 example | then the search performance
can be improved.

For example, a new score predicate could utilise interested_in/1:

score_url(Keys, URL, Score) :-—
setof (K, (member(X,Keys), m_id(URL)#>interested_in(K)), Ks),
length(Ks, Score).

The score is the number of keywords of interest to the page author.
Another extension would be to add the URLs in useful pages/2 to the ToVisit list if
they were related to any of the search keys.

When a page cannot, be downloaded (e.g., when the server is down), the “#>" goal in the
third clause of collect/6 will fail. This can be avoided by replacing the goal with:

mod_text (URL, Text)
which 1s defined as:

mod_text (URL, Text) :-—
m_id (URL)#>h_text (Text), !.
mod_text(_, "").

11

www.manaraa.com

A slightly more sophisticated version could cater for page retrieval failure by trying to
retrieve the page from a mirror site:

mod_text (URL, _, Text) :-—
m_id (URL)#>h_text (Text), !.
mod_text(_, MirrorURL, Text) :-—
m_id(MirrorURL)#>h_text(Text), !.
mod_text(_, _, "™).

This illustrates how LLP non-determinism can reflect the non-deterministic nature of the Web,
where network failure, load effects, and servers are unpredictable [Connor 1996].

3.7 LogicWeb and Existing Search Engines

Fven though LogicWeb is very useful for coding search applications, better results are obtained
if it is used in conjunction with conventional search engines. Tn the CiFi system [Loke et
al. 1996a; Han et al. 1996], a range of engines are used to find good starting points for a
LogicWeb-based search for a citation. Such starting points include the author’s home page
and the author’s departmental home page. These pages are easy to define using keywords,
and are likely to be among the first few answers returned by conventional search engines.
In addition, CiFi employs several search engines that are specialised for computer science
information (e.g. the New Zealand Digital Library, and the CS bibliography collections at the
University of Karlsruhe).

Once a starting point has been determined, a LogicWeb search program takes over to
browse through the pages beneath it. A heuristic-free search would almost certainly go into
an infinite loop, or head off to an unrelated site. Instead, T.ogicWeb uses a variety of search
heuristics. Some are based on predicates like 1ink/2 and related/2 described in section 2.1,
which are generated automatically by LogicWeb or extracted by the search program through
parsing. CiF1 also uses a page type hierarchy for a standard computing department Web site
to guide its search.

One advantage of using a combination of search engines and browsing is its resilience to
change in the Web, since home pages and departmental pages rarely change and are readily
available through the conventional search engines. Also, the LogicWeb search component can
cope with changes to pages so long as the underlying structure of the site is not altered too
drastically. Combining several engines 1s necessary since no one engine contains all the useful
citation information.

4 Lightweight Deductive Databases

LogicWeb allows the Web to be viewed as a distributed collection of deductive databases,
where each database is represented by a LogicWeb module (or Web page). This has a number
of advantages, the main one being that it offers a way of adding structured information
to the Web. Such information can be searched, combined, and extracted using familiar
techniques from deductive databases. Also, LogicWeb databases can be reused in various
ways by the application of its composition operators, although the interfaces of the databases
must be carefully designed. These databases are lightweight in the sense that they lack the
functionality of full database systems, such as transaction processing, and query optimisation.

In section 4.1, we develop a simple set of lightweight deductive databases for research
interests. This code is modified in section 4.2 to be more distributed without requiring major
changes to the query mechanism. Tn section 4.3, we discuss how LogicWeb’s union operator

12

www.manaraa.com

can improve the reusability of the code. Section 4.4 considers an important category of Web
databases: those which cannot be downloaded over the Web, but can be queried on their
servers.

More details on lightweight deductive databases can be found in [Loke et al. 1996b].

4.1 Finding Research Interests

We imagine that institutions store details of their academic interests in lightweight deductive
databases. Each database contains facts of the form:

rs_ints(name(First, Last), net_info(Login, HomePageURL), [Interest,...]).
For instance, the database at the University of Melbourne might be:

% research information at Uni. Melb.
my_id("http://www.cs.mu.oz.au/ri.html").

rs_ints(name(andrew, davison),
net_info("ad@cs.mu.oz.au", "http://www.cs.mu.oz.au/"ad"),
["Logic Programming', "AI', "Web'", '00P"]).

The database at Tmperial College in TL.ondon might be:

% research information at Imperial.
my_id("http://www.doc.ic.ac.uk/ri.html").

rs_ints(name(keith, clark),
net_info("klc@doc.ic.ac.uk", "http://www-1lp.doc.ic.ac.uk/"klc"),
["Logic Programming'", "Agents"]).

In addition, we assume a central database at http://wuw.res.info/rinfo.html which
lists the URLs of all the institute databases. Tt contains facts of the form:
institute(InstituteName, URL).

Thus, 1t might hold:

% institute info database
my_id("http://www.res.info/rinfo.html").

institute("Melbourne'", "http://www.cs.mu.oz.au/ri.html").
institute("Imperial', "http://www.doc.ic.ac.uk/ri.html").

An acad_interest/2 predicate to find someone interested 1n a given topic can be expressed
as:

acad_interest(Topic, Name) :-
m_id("http://www.res.info/rinfo.html")#>institute(_, URL),
m_id (URL)#>rs_ints(Name, _, Interests),
member (Topic, Interests).

13

www.manaraa.com

The rule chooses an institution, and uses its URIL to obtain the research interests of
someone. If the specified topic is one of the person’s interests then his/her name is returned,
otherwise backtracking will take place to look for other individuals, either at the same insti-
tution or elsewhere.

A problem with this code 1s that it will eventually load every institute database onto the
client-side. Fortunately, LogicWeb contains operators to discard modules, so that memory
usage can be kept under control.

The following contacts/2 predicate returns the login TDs of all the people at a given
institution:

contacts(Institute, Ls) :-—
m_id("http://www.res.info/rinfo.html'")#>institute(Institute, URL),
setof (Login, [N,U,I] m_id(URL)#>rs_ints(N,net_info(Login,U),I), Ls).

4.2 A More Distributed Version

The institute databases can be subdivided so that the home page of each academic contains
their research details. This has the advantage that the information can be maintained by the
academics themselves.

The structure of the central database does not change, but each institute’s database now
contains facts of the form:

researcher (URL).
For instance, the database for the University of Melbourne becomes:

% research information at Uni. Melb.
my_id("http://www.cs.mu.oz.au/ri.html").

researcher ("http://wuw.cs.mu.oz.au/"ad").
researcher ("http://wuw.cs.mu.oz.au/ " swloke").

Fach academic will now have a database in their home page which may contain a range
of information in addition to their research interests. However, care must be taken that the
old research details interface 18 maintained. For instance, Andrew Davison’s home page may

hold:

% research information for Andrew Davison.
my_id("http://www.cs.mu.oz.au/"ad").

rs_ints(name(F, L), net_info(Login, URL), Interests) :-
name(F, L), login(Login),
my_id(URL), interests(Interests).

name(andrew, davison).

login('"ad@cs.mu.oz.au").
interests(["Logic Programming', "AI', "Web'", '00P"]).

The increased distribution of information will have little effect on the predicates of the
previous section. For example, acad_interest/2 would change to:

14

www.manaraa.com

acad_interest(Topic, Name) :-
m_id("http://www.res.info/rinfo.html")#>institute(_, URL),
m_id (URL)#>researcher (RURL), % *newk
m_id (RURL)#>rs_ints(Name, _, Interests),
member (Topic, Interests).

The extra level of distribution 1s reflected in the extra module call.

4.3 Reusability Using Union

A drawback of acad_interest/2 i1s that it contains the chain of URLs which need to be
followed to find researcher information. This means that any changes to the chain requires a
change to acad_interest/2, as occurred in the last section.

acad_interest/2 would be more reusable if it did not contain this chaining information.
For instance, assume the existence of the module

my_id("http://www.res.info/acadi.html").

acad_interest(Topic, Name) :-
rs_ints(Name, _, Interests),
member (Topic, Interests).

How can this be used, since it makes no reference to the modules where rs_ints/3 is defined?
The answer i1s to combine acadi.html with the relevant modules by using LogicWeb’s union
operator, lw_union/1.

For example, the URLs of researchers from the University of Melbourne can be collected
using;:

melb_people(RUs) :-
m_id("http://www.res.info/rinfo.html'")#>institute("Melbourne'", URL),
setof (m_id(RURL), m_id(URL)#>researcher(RURL), RUs).

The Melbourne researchers interested in logic programming can then be expressed as:

?- melb_people(RUs),
lw_union([m_id("http://wuw.res.info/acadi.html") |RUs])#>
acad_interest("Logic Programming", Name).

The 1w_union/1 version of “#>” creates a clause-wise union of the modules specified in the
list, and so acad_interest/2 will utilise the rs_ints/3 facts of the Melbourne researchers.

An advantage of this approach is that acad_interest/2 can be used for searches over other
subsets of researchers without modification. For instance, Imperial College people interested
in artificial intelligence can be found using:

ic_people(RUs) :-
m_id("http://www.res.info/rinfo.html")#>institute(" Imperial", URL),
setof (m_id(RURL), m_id(URL)#>researcher(RURL), RUs).

?- ic_people(RUs),

lw_union([m_id("http://wuw.res.info/acadi.html") |RUs])#>
acad_interest("AI'", Name).

Several other T.ogicWeb composition operators are discussed in [Loke et al. 1996b].

15

www.manaraa.com

4.4 Server-side Databases

A possible disadvantage of LogicWeb for database manipulation is its use of client-side pro-
cessing, which means that a database must be downloaded to the user’s browser before 1t 1s
evaluated. This reduces the server-side load of using the database, but there are still many
reasons why the processing might be restricted to the server-side. For instance, the database
may be too large to be easily moved over the Web, or it may contain confidential information
that should not be made universally available. Commercial reasons may mean that the data-
base cannot be freely sharable. Also, having a single, central database makes 1ssues such as
transaction control and maintaining a consistent state easier.

In this section, we discuss LogicWeb’s mechanism for accessing such server-side databases.
This allows TLogicWeb to be utilised with existing databases (and search engines, as briefly
discussed in section 3.7), and to be used as a front-end to these facilities.

A
client—-side I server—-side
Il
Il
—_— post! query
— H " caI
U H ipt
ST | ansyer NP
L1 N
I db
form I answer db query
Il
Il
I member (Name, Address, Email, Renew)
Il .
Il
Il
Il
I database
L

Figure 5: A Server-side Database and its Interface.

A typical server-side database and its interface 1s represented in Figure 5. A user poses
a query to the database via a form on a Web page available from the database site. The
form details are transmitted to a server-side CGI script which 1s named within the form. We
shall assume that the script is located at http://www.cs.mu.oz.au/cgi-bin/db-query in
the following discussion. The form details are encoded as a POST method using the HTTP
protocol [Davison 1995]. Essentially, each field of the form is converted into a string of the
type ¢ ‘field-name=field-value’’. These are read by the CGI script which converts them
into a query suitable for the database. The script also converts the database answer into an
appropriate Web format (usually a Web page) which is sent back to the client.

In Figure 5, the database 1s assumed to contain Prolog facts of the form:

member (Name, Address, Email, Renewal-Date).
For example:

member (name ("'Andrew Davison'), address("Univ. of Melbourne'),
email("ad@cs.mu.oz.au"), renew(november, 1996)).

16

www.manaraa.com

The forms interface contains four fields labelled with “Name”, “Address”, “Email”, and
“Renew”. The fields can be filled in or left blank (with the value “none”). These field names
and values are converted by the CGI script into suitable arguments in a goal, and applied
to the database. After the database engine has evaluated the query, the script converts the
results into a Web page for the user.

Having outlined a likely server-side database, how can LogicWeb interact with 117 Tt uses
a variant of the “#>” operator:

m_id(post(URL_of _CGI_script, List_of_Fields))#>Goal.
For the scenario outlined above, a possible query would be:

m_id(post("http://www.cs.mu.oz.au/cgi-bin/db-query",
[field("Name", "none"), field('"Address", "Univ. of Melbourne'),
field("Email", '"none"), field('"Renew', "none')]))#>
member (Name, _, Email, renew(_, 1997)).

The post/2 term can be viewed as a specification of the module against which the member/4
goal will be evaluated. Tn this case, the retrieved module will contain all the members from the
University of Melbourne, and the goal will extract the name and e-mail address of someone
who should renew during 1997 (through backtracking all the Melbourne people in this situ-
ation can be collected).

This abstraction moves away from the notion of a POST message being sent to a server-side
database, and utilises the familiar LogicWeb model of queries applied to retrieved modules.

Similar mechanisms are also available for specifying modules created using the GET and
HEAD methods in the HTTP protocol.

5 Implementation

LogicWeb is implemented using the Common Client Tnterface (CCT) in the NCSA XMosaic
Browser [NOSA 1996]. Figure 6 shows the general structure of the system together with the
sequence of steps taken when a user clicks on a hypertext link.

The TLogicWeb system has two components: WWWMain and a Prolog engine. WWWMain is
about 400 lines of C, and converts CCI output into a suitable format for the Prolog part,
and also creates temporary local files. The Prolog system is mostly written in SWI-Prolog,
and 1s about 1600 lines long. Most of its code i1s for the LogicWeb meta-interpreter, but
there are also utilities for parsing and communicating with the Web. Some of the low-level
and/or speed critical features (such as string matching) are coded as C functions with Prolog
interfaces.

When the user clicks on a link (step 1), Mosaic gets the page from the Web (steps 2 and
3). The page is not displayed but passed through the CCT to WiWMain (step 4). WWWMain
saves the page to a temporary local file (step 5) and sends a “page downloaded” message via
a pipe to the Prolog engine process (step 6). The Web page is read in by the engine (step 7)
and converted to a LogicWeb module which is stored inside the meta-interpreter. Often the
temporary page is modified to include a forms interface for entering LogicWeb queries (step
8). When any modifications are complete, the URTL of the page is sent to Mosaic via the CCT
(step 9), and a “done” message is transmitted to WWWMain (step 10) signalling that the Prolog
engine is ready for further work. Mosaic uses the URI it receives via the CCI to load and
display the temporary page (step 11).

Figure 7 illustrates the other main form of user interaction with LogicWebh: the processing
of a query.

17

www.manaraa.com

@click

User
4—
@display

The Web

- 4@

URL of temp page

URL of temp page

download
msg((6)

—>

done msg

save
@ page @
temp ead/parse

"
Web
page

WWWmain

Prolog

Figure 6: The LogicWeb System and the steps followed after a user clicks on a link.

The query is input via a form (step 1) and the goal is extracted by a CGIT script (step 2).
The goal is passed to the CCT (step 3) and onto WWWMain (step 4) and finally to the Prolog
engine (step 5). Tf the goal uses a module that has already been downloaded (such as the
current page), then the meta-interpreter immediately evaluates the goal and stores the answer
in a temporary Web page (step 8). The URL of this page is sent to Mosaic via the CCT (step
9) and the page is displayed by Mosaic (step 11). At the same time, the Prolog system sends
a “done” message to WWWlain to signal its readiness for further work (step 10).

A slightly more complicated sequence occurs if the LogicWeb goal requires a module that
is not, presently on the client-side. In that case, the corresponding page is obtained from the
Web (steps 6 and 7), and the module is extracted before the goal is evaluated.

The operational semantics of the meta-interpreter can be specified easily by using a variant
of the demo/2 predicate introduced in [Kowalski 1979; Bowen and Kowalski 1982]. Assuming
that demo/2 has the form:

demo(ListofModules, Goals)
then the processing of a m_id (URL)#>Goal can be described with the code fragment:

demo(Ms, [m_id(URL)#>Goall|Gs]) :-
lookup(URL, Ms, Module),
apply(Module, Goal),
demo(Ms, Gs).

demo(Ms, [m_id(URL)#>Goall|Gs]) :-
web_load (URL, Module),
apply(Module, Goal),

18

www.manaraa.com

(1

display
-
User ___ oI °

enter \

9
forms
detal Is

CGlI script goa'

WWWmain

page

Figure 7: The LogicWeb System and the steps followed after a user enters a query.

demo([Modulel|Ms], Gs).

lookup/3 is a simple list search predicate which uses the URL (the module’s TD) as a
search key, and either returns the corresponding module or fails. Tf it is successful then Goal
s evaluated against Module using apply/2, and demo/2 continues. If lookup/3 fails, then
web_load/2 in the second clause accesses the Web for the page with the address URI. and
converts it to a module. (Goal is applied to this module, and demo/2 recurses with the module
added to 1ts module list.

At a more abstract level, m_id (_))#>G corresponds to the context switch operation found
in contextual TP [Monteiro and Porto 1989]. The goal is proved in the specified module
regardless of the current context:

MEG
MstE m_id(M)# > G

Tt also corresponds to the operation [M]G in [Baldoni et al. 1993], where [M] is a modal
operator.

6 Related Work

The Web uses a client-server communications model, and we start by considering I.P systems
which are client-based (which includes LogicWeb), and then examine server-side solutions.
Finally, we briefly describe more expressive Internet-based T1.P systems, which utilise a peer-
to-peer communications model.

19

www.manaraa.com

6.1 Client-side Systems

WeblLog can refer to aspects of Web page structure (the title, links, etc) using LP goals that
utilise the page’s URL as an identifier [Lakshmanan et al. 1996]. However, WeblLog does
not treat pages as modules, and pages cannot contain arbitrary ILP code, or be composed
together.

Several TP libraries allow pages to be downloaded from the Web [Bonnet et al. 1996;
Cabeza and Hermenegildo 1996]. These packages also contain tools for parsing the text and
extracting information. With these tools, it would be relatively easy to support a fragment
of TL.ogicWeb. However, these packages do not contain important browser capabilities, such
as being able to display pages, capture clicks on hypertext links, or accept queries from Web
forms. Aside from these libraries, any Prolog system with a TCP/TP sockets library, or the
ability to invoke a utility like telnet, can retrieve pages off the Web.

Java is a popular client-side programming language, and 1s being used with Prolog in
various ways. An interesting interpreter for a subset of Prolog, called W-Prolog, has been
written in Java [Winikoff 1996]. Amzi! Prolog has a Java class interface to its Prolog system
[Amzi! Prolog 1996]. MINERVA is a compiler for Prolog which generates Java byte-codes [TF
Computer 1996], and a similar approach is used in the jProlog addition to BinProlog [Tarau
1996]. Another technique is to link Java to a Prolog engine through its sockets class [Ferguson
1996]. Tnterestingly, he rejected this approach due to firewall restrictions on non-HTTP traffic.

A drawback with using Java is its restrictive security features. For example, it is quite
difficult to store information between sessions since file creation is usually prohibited. Also,
Java does not normally allow pages to be downloaded from arbitrary Web sites [l.emay and

Perkins 1996].

6.2 Server-side Systems

There are several server-side approaches for using I.LP in the Web.

As mentioned earlier, CGI is a popular server-side programming interface, which allows
information from Web forms to be passed to programs. There are several libraries for writing
Prolog programs which can process information from CGI input, and generate suitable replies
(typically, new Web pages) [Amzi! Prolog 1996; Cabeza et al. 1996; Cabeza and Hermenegildo
1996; Carpenter 1996; Naish 1995]. The basic idea is captured by Figure 8.

Examples include: WebLS, a tool for building help systems [Sehmi and Kroening 1996],
Bob Carpenter’s theorem prover (http://macduff.andrew.cmu.edu/cgparser/), and Lee
Naish’s TOLP’97 submissions form (http://wuw.cs.mu.oz.au/~lee/iclp97/submitreg.html).

The CGI script 18 newly invoked for each query from a client, which can be a problem if
the script has to load very large support software. Much of this overhead should be avoidable
by the use of shared dynamically linked libraries, and by the utilisation of compilers which
generate fast object code and small executables. Also, it is far from clear whether the poor
performance of a particular Prolog CGI script is due to its coding in Prolog, or because of
network and machine overheads, and/or the slowness of CGT.

A related issue is that the client-server model allows a server to process several clients
concurrently, which implies that several invocations of the same script may need to be running
simultaneously. This may not be practical because of the size of the system, and also makes
changes to shared resources more complicated.

Another server-side solution is to separate query processing into two parts: a light-weight
CGT script which acts as an interface to a separate heavy-weight task process. A key feature
of the task process is that it is continually running, and so only needs to be loaded once. In
the context of LP, this process would be a Prolog engine or logic database. The invoked CGT

20

www.manaraa.com

n
11
11
form details

client ™
User T I
browser L TT K\server <)
answer

H invoke with
11 answer .
N form input
11
M CGI script
11 . .
. written 1in
Ll Prolog
11
(]

Figure 8: Using Prolog CGT Scripts.

interface scripts communicate with the task process by using sockets. The overall approach
is shown in Figure 9.

n
11
11
form details

client
User L
browser L TT (\server ::
answer
H invoke with
I answer .
N form input
11
11
o) CGI Prolog
" interface socket task
I script link process
11
(]

Figure 9: Separating the Interface and Task Processes.

The Announce system uses this technique to implement its electronic calendar of events
[Luttringhaus-Kappel and Schulz 1996]. The task process is coded in ECLiPSe.

This approach is also used in the EMRM knowledge base of medical records, but it utilises
the OR-parallel Aurora system to process multiple queries at once [Szeredi at al. 1996].

Don Ferguson has implemented a financial database access system using Quintus Prolog
and its TCP library (see http://edgarscan.tc.pw.com/). The user interface is a Java applet,
which communicates with the CGT interface script.

The Pillow/CTAQO library supports a higher level communications layer between the in-
terface and task processes based on Active modules. Each invocation of the interface script
communicates with the task process as if it was calling a module [Cabeza et al. 1996]. The

21

www.manaraa.com

authors speculate on using &-Prolog/CTAO to parallelise their Prolog engine.

Although this server-side technique solves the problem of multiple invocations of poten-
tially large task processes, it still leaves unresolved how to support multiple queries on a
shared resource. This remains an issue even when parallel languages are used. Another prob-
lem, addressed in the EMRM system, 1s how to deal with lengthy browser interactions, which
require the task process to suspend while the user enters further details.

A third server-side technique is to completely replace the traditional Web server by soft-
ware which combines the functionality of a server with the particular task. This is illustrated

in Figure 10.
) query M
User client 3 dedicated
browser o LP server
answer I

Figure 10: A Dedicated TP Server.

r,

A notable TP solution in this style 1s the ECLiPSe HTTP server library, which allows a
basic server framework to be customized for different communication protocols [Bonnet et
al. 1996]. Tndeed, the major advantage of this technique is the way that the server can be
specialised for specific applications and communication modes. The main drawback is the
large amount of work required to implement a fully featured server with concurrency control,
error handling, administrative tools, and so on.

This approach 1s also used in the Munich Rent Advisor, which coded its server with
ECTLiPSe (but without the help of the ECLiPSe HTTP server library) [Frithwirth and Ab-
dennadher 1996].

6.3 Peer-to-Peer Systems

The Web model is based on clients and servers, which makes it difficult to code systems
where the communication 1s between entities with equal status. In particular, it discourages
the implementation of multi-agent systems where it is essential that all the participants can
communicate on equal terms.

For this reason, some I.P systems utilise the Internet as their underlying communication
layer. Two languages in this category are Distributed Oz [Haridi and Van Roy 1996] and
April [McCabe and Clark 1995]. Both use message passing and have the ability to move code
between machines. April is not strictly speaking a TP language, but has borrowed ideas from
I.P, and its macro language can be used to support more Prolog-like behaviour [Clark et al.
1996].

SICStus Prolog and its objects package are being used to develop an Internet-based trading
application called MarketSpace [Eriksson et al. 1996]. However, the authors note the need for
a language that supports richer notions of concurrency, and features such as persistence.

The blackboards in Multi-BinProlog are the basis of L.ogiMoo, a high-level kernel for Inter-
net collaborative work [Tarau and De Bosschere 1996]. Tt uses local and virtual blackboards
to hide the underlying network. Similar approaches may be possible in other ILP languages

with Linda-style blackboards, such as STCStus Prolog [STCStus 1996] and &-Prolog/CTAQ

22

www.manaraa.com

[Hermenegildo and Greene 1991]. There is a commercial product along these lines, called
Ubique NDoors, which initially used FCP [Shapiro 1994]. However, it is now coded in C++.

7 Summary
There are three key advantages of using L.LP for Web programming.

e [.P allows the Web to be viewed more abstractly. LogicWeb encourages Web pages and
hypertext links to be reinterpreted as modules and relationships. The practical result
is that programmers do not need to concern themselves with lower-level issues like page
retrieval and parsing.

e [P is particularly suitable for coding important classes of Web applications. We have
currently identified three domains: information structures, search, and parsing. The
ease of coding structured information (e.g. as in a database), and manipulating it, is in
stark contrast to the effort required to do the same in imperative or object-oriented lan-
guages. Simple search applications using backtracking can be coded in a few lines, and
more robust versions can utilise heuristics coded with familiar I.P techniques. Parsing
is essential to most applications, and plentiful techniques are available (e.g. DCGs and
other logic grammars).

e [.P supports meta-programming. Meta-level reasoning is essential for making a program
“intelligent” in the sense that it can reason about its own actions, and respond to
changes in its environment (the Web) [Kowalski 1996]. Meta-programming facilitates
the manipulation and composition of LogicWeb modules using an approach similar to
that described in [Brogi et al. 1994b], except that the modules come from the Web.
These techniques are possible because module TDs and Web pages are represented as
first class entities in LogicWeb.

Meta-programming makes interpreters easier to build, offering the potential for T.o-
gicWeb modules to store information in domain-specific languages (e.g. as HTMT. meta

tags, VRMTL.).

Meta-level capabilities are also important for the implementation of LogicWeb’s infer-
ence engine, and for the specification of its operational semantics. The simplicity of this
encoding makes it easier to specify security restrictions.

Future Work. TLogicWeb must be able to model the changing nature of the Web, and so we
shall be exploring the use of temporal operators to capture the notion of repeatedly updating
and differentiating between versions of a module.

Since LogicWeb interprets a click upon a hypertext link as a goal, it is straightforward
to enhance the meaning of the link. A large body of work exists in the hypertext literature
on various forms of link behaviour, which might be usefully reinterpreted in the context of
LogicWeb [CACM 1995].

Our work on lightweight deductive databases can be extended in a number of directions,
including support for server-side updates, and the investigation of composition operators such
as intersection and inheritance.

Further work is required to make LogicWeb more secure. The meta-interpreter imple-
mentation of LogicWeb’s inference engine means that it 1s relatively easy to control which
goals are evaluated. A more problematic aspect is resource control, where code should be
prevented from going into an infinite loop, and from downloading modules until memory 1s

23

www.manaraa.com

exhausted. Resource bounded inferencing, strong typing, and partial evaluation may be of
use.

LogicWeb’s reliance on NCSA XMosaic makes the system difficult to distribute. We may
recode the system as a Netscape plug-in to make it more portable.

The operational semantics of LogicWeb has only been partially defined as yet. However,
we hope to draw upon the work on the semantics of structured I.P [Brogi et al. 1994a; Brogi
et al. 1994b; Bugliesi et al. 1994] in order to develop a fuller semantics.

Acknowledgements. We are grateful to Leon Sterling for valuable comments on a previous
version of this paper.

References

Amzi! Prolog. 1996. “Internet and Web Tools”, http://wuw.amzi.com/internet.htm.

Baldoni, M., Giordano, I.., and Martelli, A. 1993. “A Multimodal Logic to Define Modules
in Logic Programming”, Tn Proc. of the Int. Symp. on Logic Programming, D). Miller (ed.),
MIT Press, pp.473-487.

Bonnet, Ph., Bressan, S., Leth, T.., and Thomsen, B. 1996. “Towards ECLiPSe Agents
on the Internet”, In Proc. of the 1st Workshop on Logic Programming Tools for Internet
Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-
SLP’96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.1-9. Also
at http://www.cs.mu.oz.au/~ad/lp-internet/eclipse/ea.html.

Bowen, K. and Kowalski, R.A. 1982. “Amalgamating .anguage and Meta-language”, In
Logic Programming, K.T.. Clark and S. Tarnlund (eds.), Academic Press, pp.153-172.

Brogi, A., Mancarella, P., Pedreschi, D., amd Tutini, F. 1994a. “Modular Togic Program-
ming”, ACM Trans. on Programming Languages and Systems, Vol. 16, No. 4, pp.1361-1398.

Brogi, A., Renso, C., and Turini, F. 1994b. “Amalgamating l.anguage and Meta-T.anguage
for Composing Logic Programs”, In Proc. of GULP-PRODF 94 Joint Conference on Declar-
ative Programming, Peniscola, Spain.

Also at ftp://ftp.di.unipi.it/papers/turini/PRODE94.ps.gz.

Bugliesi, M., L.amma, E., and Mello, P. 1994. “Modularity in Logic Programming”,
Journal of Logic Programming, Vol. 19 & 20, May, pp.443-502.

Cabeza, 1. and Hermenegildo, M. 1996. “html.pl: An HTMT Package for (C)LP Sys-
tems”, Spain, March. Available from http://www.clip.dia.fi.upm.es/miscdocs/.

Cabeza, D., Hermenegildo, M., and Varma, S. 1996. “The PiLLoW/CTAQ Library for
INTERNET/WWW Programming”, In Proc. of the 1st Workshop on Logic Programming
Tools for Internet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo
(eds.), JICST.P’96: Joint Tnt. Conf. on Logic Programming, Bonn, Germany, September,
pp-43-62. Also at http://www.cs.mu.oz.au/~ad/lp-internet/pillow/lpnet3.html.

CACM 1995. Special Tssue on “Designing Hypermedia Applications”, Comm. of the ACM,
Vol. 38, No. 8, August.

Carpenter, B. 1996. “A Prolog-Based CGT Handler”,
http://macduff.andrew.cmu.edu/cgparser/prolog cgi.html.

Clark, K.I.., Skarmeas, N., and McCabe, F.GG. 1996. “Agents as Clonable Objects with
Knowledge-base State”, In Proc. of the 2nd Int. Conf. on MultiAgent Systems. Also at
http://www-1p.doc.ic.ac.uk/~klc/mob agents.html.

Connor, R. 1996. “An Overview of the Aims of the Hippo Project”. Awvailable from
http://grappa.dcs.st-and.ac.uk/HIPPO/overview.ps.

24

www.manaraa.com

Davison, A. 1995. “Programming with HTMT., Forms”, Dr. Dobb’s Journal, Vol. 20, No.
6, June, p.70-75.

FEriksson, J., Finne, N., and Janson, S. 1996. “Information and Interaction in MarketSpace
and their Tmplementation in Prolog”, In Proc. of the 1st Workshop on Logic Programming
Tools for Internet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo
(eds.), JICST.P’96: Joint Tnt. Conf. on Logic Programming, Bonn, Germany, September,
pp-125-137. Also at http://www.cs.mu.oz.au/~ad/lp-internet/ms/marketspace.html.

Ferguson, D. 1996. “Iinking a Prolog Program into an HTTPD”, Posting to
comp.lang.prolog, November 7th.

Friuhwirth, T. and Abdennadher, S. 1996. “The Munich Rent Advisor”, In Proc. of the 1st
Workshop on Logic Programming Tools for Internet Applications, P. Tarau, A. Davison, K. De
Bosschere, and M. Hermenegildo (eds.), JTCST.P’96: Joint Tnt. Conf. on Logic Programming,
Bonn, Germany, September, pp.11-27. Also at
http://www.cs.mu.oz.au/~ad/lp-internet/lpnet5/lpnet5.html.

Han, Y., Loke, SSW., and Sterling, .. 1996. “Agents for Citation Finding on the World
Wide Web” | Dept. of Computer Science, Univ. of Melbourne, Tech. Report 96/40. Available
from http://uww.cs.mu.oz.au/tr db/mu 96 _40.ps.gz.

Haridi, S., and Van Roy, P. 1996. “An Overview of the Design of Distributed Oz”, Tn Proc.
of the Multi- Paradigm TLogic Programming Workshop, M.M. T Chakravarty, Y. Guo, and Y.
Tda (eds.), JICSL.P’96: Joint Tnt. Conf. on Logic Programming, Bonn, Germany, September,
pp-13-24.

Hermenegildo, M. and Greene, K. 1991. “The &-Prolog System: Exploiting Independent
And-Parallelism”, New Generation Computing, Vol. 9, No. 3,4, pp.233-257.

Hodgson, J. 1996. “Programming Language Prolog Part 2, Modules”, Committee Draft,
May 31st. Available from http://www.sju.edu/~jhodgson/x3j17 .html.

HTMT, 3.2 Reference Specification. 1996. W3C Proposed Recommendation.
http://wuw.w3.org/pub/WWW/TR/PR-htm132-961105.

TF Computer. 1996. MINERVA Documentation,
http://wwu.ifcomputer.com/StrategicWeb/MINERVA/home en.html.

Kowalski, R.A. 1979. Logic for Problem Solving, FElsevier, New York.

Kowalski, R.A. 1996. “Using Meta-Logic to Reconcile Reactive with Rational Agents”,
PAAM 96: The Practical Applications of Intelligent Agents and Multi-Agent Technology,
London, April, pp.361-374.

Lakshmanan, ..V.S., Sadri, F., and Subramanian, I.LN. 1996. “A Declarative Approach
to Querying and Restructuring the World-Wide-Web” | Post-ICDFE Workshop on Research
Issues in Data FEngineering (RIDE’96), New Orleans, February. Available as
ftp://ftp.cs.concordia.ca/pub/laks/papers/ride96.ps.gz

Lemay, I.. and Perkins, C. 1996. Teach Yourself Java in 21 Days, Sams.net Publishing.

Loke, S:W. and Davison, A. 1996. “Logic Programming with the World-Wide Web” | Tn
Proc. of the 7th. ACM Conf. on Hypertert, ACM Press, March, pp.235-245.

Loke, S.W., Davison, A., Sterling, .. 1996a. “CiFi: An Intelligent Agent for Citation
Finding on the World Wide Web”, PRICAT’96: jth Pacific Rim Int. Conf. on Artificial
Intelligence, Cairns, Australia, August.

Loke, S.W., Davison, A.; and Sterling, .. 1996b. “Lightweight Deductive Databases on
the World-Wide Web”, In Proc. of the 1st Workshop on Logic Programming Tools for Internet
Applications, P. Taran, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JTCST.P’96:
Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.91-106. Also at
http://www.cs.mu.oz.au/~ad/lp-internet/lwddbs/luddbs .html.

Tuke, S., Spector, I.., and Rager, D. 1996. “Ontology-Based Knowledge Discovery on the
World Wide Web”, ITn Proc. of the Workshop on Internet-based Information Systems, AAAI-

25

www.manaraa.com

96, Portland, Oregon, USA.
Also at http://www.cs.umd.edu/projects/plus/SHOE/aaai-paper.html.

TLuttringhaus-Kappel, S. and Schulz, D. 1996. “A Calendar of Events Architecture
and FExperiences” In Proc. of the 1st Workshop on lLogic Programming Tools for Internet
Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-
SLP’96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.29-41. Also
at http://www.cs.mu.oz.au/~ad/lp-internet/announce/announce.html.

McCabe, F.G. and Clark, K.T.. 1995. “April Agent Process Interaction Language”, In
Intelligent Agents, M. Wolldridge and N. Jennings (eds.), LNAT, Vol. 890, Springer-Verlag.

Monteiro, I.. and Porto, A. 1989, “Contextual Logic Programming”, In Proc. of the 6th
Int. Conf. on Logic Programming, G. Levi and M. Martelli (eds.), Lishon, Portugal, The
MIT Press, pp. 284-299.

Naish, .. 1995. “HTMT. Forms Interface to NU-Prolog”,
http://wuw.cs.mu.oz.au/~lee/src/forms/index.html.

NCOSA. 1996. NCSA XMosaic and CCI Documentation,
http://wuw.ncsa.uiuc.edu/SDG/Software/XMosaic/ and
http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html.

Reynolds, M.C. and Wooldridge, A. 1996. Special Fdition Using JavaSeript, QUE.

Sehmi, A. and Kroening, M. 1996. “Web.S: A Custom Prolog Rule Engine for Providing
Web-Based Tech Support”, In Proc. of the 1st Workshop on Logic Programming Tools for
Internet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.),
JICSTP’96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.107-123.
Also at http://www.cs.mu.oz.au/~ad/lp-internet/amzi/lspap.html.

Shapiro, E. 1994. “Enhancing the WWW with Co-Presence”, Tn Proc. of the 2nd Int.
Conf. on the WWW.

STCStus. 1996. SICStus Prolog Documentation, http://www.sics.se/sicstus.html.

Szeredi, P., Molnar, K., and Scott, R. 1996. “Serving Multiple HTMI. Clients from a
Prolog Application”, In Proc. of the 1st Workshop on Logic Programming Tools for Internet
Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-
SLP’96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.81-90. Also
at http://www.cs.mu.oz.au/~ad/lp-internet/iqsoft/multiple.html.

Tarau, P. 1996. BinProlog 5.25 Documentation, System available from
http://clement.info.umoncton.ca/~tarau.

Tarau, P. and De Bosschere, K. 1996. Virtual World Brokerage with BinProlog and Nets-
cape”, In Proc. of the 1st Workshop on Logic Programming Tools for Internet Applications,
P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JICST.P’96: Joint Tnt.
Conf. on Logic Programming, Bonn, Germany, September, pp.63-80. Also at
http://wuw.cs.mu.oz.au/~ad/lp-internet/lpnet10/art.html.

Winikoff, M. 1996. W-Prolog 1.0 Documentation, System available from
http://www.cs.mu.oz.au/~winikoff/wp.

26

www.manaraa.com

