
www.manaraa.com

LogicWeb: Enhancing the Web with Logic ProgrammingAndrew Davison Seng Wai LokeDept. of Computer Engineering Dept. of Computer SciencePrince of Songkla University University of MelbourneHat Yai, Songkhla 90112, Thailand Parkville, Victoria 3052, AustraliaEmail: ad@ratree.psu.ac.th Email: swloke@cs.mu.oz.auDecember 23rd, 1996AbstractLogicWeb is a client-side logic programming tool for the World Wide Web, whichallows the Web to be viewed in a more abstract way: Web pages can be rephrasedas logic programming modules, and hypertext links as relationships between themodules.This abstraction makes LogicWeb particularly suitable for coding important classesof applications, and this paper considers two in some detail: Web search, and thestructuring of Web information using deductive databases.LogicWeb illustrates that logic programming possesses many advantages for writ-ing Web applications, including the simple representation of information (e.g. asdeductive databases or as logic grammars), the ability to write meta-level descrip-tions (e.g. of pages and the connections between pages), and the encoding of rulesand heuristics necessary for \intelligent" behaviour.

www.manaraa.com

1 IntroductionThe World Wide Web's popularity derives from its support for the global publication ofpages which contain graphics, sound, animations, 3D images, and so on. The Web is also anexcellent information source, made accessible through numerous search engines.A drawback of basic Web pages is their limited executable behaviour, which is essentiallyrestricted to clicking on hypertext links. This has been addressed by two classes of program-ming extensions, one based on server-side evaluation, the other on client-side computation.Server-side evaluation typically involves the user in completing a form on their browser,which is submitted across the network to a Web server to be processed. The most widespreadserver-side evaluation mechanism is the Common Gateway Interface (CGI) which deliversform details to programs, and routes any output from the code back to the user [Davison1995].One disadvantage of server-side programming is the di�culty of extending the user in-terface. For instance, it is not possible to intercept the activation of a hypertext link or toaugment the forms interface with additional GUI elements. Also, since server-side scripts areusually located on di�erent machines from the forms which use them, communication latencycan be a problem. A further drawback is the load on the server caused by multiple clientsrunning scripts.The other kind of Web programming evaluates code on the client-side (i.e. on the user'sbrowser). Two well-known languages of this type are JavaScript [Reynolds and Wooldridge1996] and Java [Lemay and Perkins 1996]. The client-side approach allows programs to utilisea wider variety of browser features than server-side scripts, thereby increasing the possibletypes of user interaction. For instance, Java comes with a rich set of GUI class libraries,and JavaScript can access the browser's history list of recently retrieved pages. Typically,client-side code is downloaded with the page that uses it, and so network characteristics willnot a�ect the program's execution.A drawback of many client-side languages is their complexity. For example, Java sup-ports the typical features of an imperative object oriented language (although it has removedpointers). This means that the representation of structured information, as found in data-bases for instance, involves the manipulation of an assortment of data structures. Also, theselanguage o�er little support for meta-level information, such as descriptions of pages and therelationships between pages. These capabilities are extremely useful for a diverse class of Webapplications, including search and data mining.Security is an issue with client-side programming since it relies on code being moved froma foreign host to be executed locally. Java has a number of interesting security features,but they can make it di�cult to do common tasks such as �le manipulation and Web pageretrieval [Lemay and Perkins 1996].There are two main aims of our work. The �rst is to utilise Logic Programming (LP) asa way of viewing the Web more abstractly than just as pages connected by hypertext links.Our LogicWeb system allows the Web to be manipulated as a collection of LP modules,which can be interrelated using familiar LP techniques [Loke and Davison 1996]. This view isnot simply a pleasing abstraction, but is essential as a framework for writing Web programsthat manipulate structured information or carry out meta-level reasoning.The second aim is to investigate the use of LP as a client-side programming tool for theWeb. The client-side approach is utilised because it o�ers the opportunity to provide novelforms of user interaction while avoiding network problems.LogicWeb is introduced in section 2. Section 3 examines how Web search tools can bedeveloped using LogicWeb, with an emphasis on the representation of search heuristics. Sec-tion 4 considers how structured Web information can be encoded as lightweight deductive1

www.manaraa.com

databases. The implementation of LogicWeb is outlined in section 5. Other approaches tousing LP with the Web are described in section 6. Section 7 contains a summary of the mainpoints of this work, and some possible directions for future research.The material presented here is an expansion of work reported in [Loke and Davison 1996;Loke et al. 1996a; Loke et al. 1996b]. These papers can be found athttp://www.cs.mu.oz.au/�swloke/logicweb.html.2 What is LogicWeb?2.1 LogicWeb OverviewA simple view of the Web is as a collection of pages connected by hypertext links. A fragmentmight look like Figure 1. We shall make the assumption that every page has a unique address(its URL). In fact, there are exceptions to this, such as when a page is dynamically createdby a CGI script. linksURL4 URL3URL2URL1 ��������>������	 - ZZZZZZZZZZ} Web PageWeb Page Web PageWeb Page
Figure 1: Web Pages connected by Hypertext links.The LogicWeb view extends pages to become LP modules, and allows link connectivity tobe augmented with LP relationships. The previous fragment could be viewed by LogicWebas in Figure 2. Each module still contains the text of the Web pages, but now extended withLP code. How this combination is achieved is described below.Another change of perspective is to label each module with an ID (e.g. mod1, mod2 inFigure 2). The requirement is that each ID is unique, and LogicWeb achieves this by usingthe page's URL.A module ID is represented by a term at the LP level, and so modules become amenableto meta-level reasoning. For instance, the fact:is_a_summary_of(mod1, mod2).speci�es that mod1 is a summary of mod2. This could be used by an on-line book previewerto direct the browser from a summary page (in mod1) to a more detailed page (in mod2), or toguide the browser from the details to the summary. Such facts (and rules) play an importantrole in LP-based Web search engines, as described in section 3.2

www.manaraa.com

mod4 mod3mod2mod1 relations��������,,,,,hhhhhhh ZZZZZZZZZZWeb Page+ LP code Web Page+ LP codeWeb Page+ LP codeWeb Page+ LP code
Figure 2: LogicWeb Modules connected by LP relationships.LogicWeb is a client-side LP system, which is conceptually between the user's browser andthe Web as shown in Figure 3. � -����� SS!!!bb JĴPPPPq ��	PPPPqstoremoduleClient-side� -�� ��LogicWeb�� ��browser pagereturnpagereturn pagegetpageget pagesThe WebUser
Figure 3: A Stylised Overview of the LogicWeb System.Figure 3 illustrates (in a stylised form) how LogicWeb supports the LP abstraction of theWeb. When a Web page is retrieved, it is displayed by the browser as normally. However, thepage is also converted into a module and stored on the client-side. A downloaded page/moduleis a copy of the original page on the Web, which becomes signi�cant when state change isconsidered.The presence of LogicWeb between the browser and the Web means that it can interpretthe user's input. For instance, LogicWeb can convert a click on a hypertext link into agoal. This conversion allows programmers to write code which extends the meaning of a click3

www.manaraa.com

beyond page retrieval.LogicWeb converts all retrieved pages into modules, including those with no additionalLP code. The basic transformation generates two facts for each Web page:my_id("URL").h_text("Page text").my id/1 holds the module's ID which is its URL, while h text/1 contains the complete textof the Web page (including its HTML tags) as a string. my id/1 allows the module to referto itself. An example is when a program must determine if its module ID is di�erent fromthat of another.LogicWeb also parses each page looking for link information so that a link/2 predicatecan be generated. For instance, the line:I like beer making.becomes:link("beer making", "http://www.prost.org/beermake.html").LogicWeb can also generate facts about the page structure, including a title/1 fact andsimilar information about section, sub-section, and other headings.We have still not determined what constitutes a useful set of automatically generatedpredicates, but such predicates can be readily created by the programmer by calling built-inparsing utilities.LP code appears on a page inside a <lw_code>...</lw_code> container. For instance,the following could be part of my home page:<lw_code>interests(["Logic Programming", "AI", "Web", "OOP"]).related("logic", "Logic Programming").related("agents", "AI").useful_pages("Logic Programming",["http://www-lp.doc.ic.ac.uk/","http://www.cs.mu.oz.au/~ad/alp/archive.html"]).interested_in(X) :-interests(Is), member(X, Is).interested_in(X) :-related(X,Y), interested_in(Y).</lw_code>Typically, such code appears inside a <pre>...</pre> container so that is uninterpretedby the browser.The facts and rules in the example illustrate the kinds of Web information that can berepresented. The interests/1 and related/2 facts give details about the author of thepage in a structured form that can be readily processed. The useful pages/2 fact could beemployed by a search engine looking for LP information, or for details on logic (by using theappropriate related/2 fact). The interested in/1 rules show how page information can beinferred. 4

www.manaraa.com

Once a LogicWeb module has been downloaded, it is queried via a forms interface, which isadded to its corresponding page before it is passed to the browser. Alternatively, a LogicWebinput form may already have been added to the page by its author.The LP language utilised by LogicWeb is a fairly elementary Edinburgh-style Prolog withsome additional module operators. The main operator applies a goal to a module speci�edby its module ID (i.e. its URL):m_id(URL)#>Goal.If the module is not present in the module store (see Figure 3) then its page will bedownloaded and transformed into a LogicWeb module before the query is evaluated. However,if the module is already in the store then the goal is executed immediately. Thus, the \#>"operator permits the programmer to think of Web computation as goals applied to modules,with no need for explicit Web page retrieval or parsing.LogicWeb contains a number of module composition operators, inspired by work on struc-tured LP [Brogi et al. 1994a; Bugliesi et al. 1994], and contextual LP [Monteiro and Porto1989], such as the union operator:lw_union(ListofModuleIDS)#>Goal.This creates the clause-wise union of the modules for the duration of the goal evaluation. Seesection 4.3 for an example.LogicWeb is not alone in adding more machine-processable semantic content to pages. Therecently proposed HTML 3.2 standard [HTML 3.2 1996] contains tags for meta-informationbased around name-value pairs. HTML links can also be classi�ed by using attributes. Inaddition, [Luke et al. 1996] has proposed new HTML tags for incorporating ontology-basedknowledge into pages, in the form of IS-A class hierarchies and instance-instance relationships.For example, a subsection can be related to another page by a named relationship.2.2 Examples of LogicWeb UseBoth of the examples in this section are simple search utilities; more complicated search toolswill be developed in section 3.The �rst example �nds a similar page given a starting URL. The query:?- similar_pg("http://www.cs.mu.oz.au/~ad", P).will try to bind P to a URL which is similar to the given address. similar pg/2 is de�ned as:similar_pg(CurrURL, SimilarURL) :-m_id(CurrURL)#>interested_in(Topic),m_id(CurrURL)#>link(Topic, SimilarURL).The program obtains an interested in/1 topic from the given page and uses it to select alink leaving that page. The evaluation of the query will probably involve backtracking as itis unlikely that every topic of interest has an associated link.A serious drawback of this code is that it assumes the page contains interested in/1 andlink/2 facts. It will have the latter, since they are generated automatically (unless there areno links leaving the page). It is less certain that there will be an interested in/1 predicate.This can be remedied by including an extra clause in similar pg/2 which analyses the pageusing the h text/1 string.The second example uses the h text/1 approach to �nd a page relevant to a given subjectand starting page. The query: 5

www.manaraa.com

?- relevant_pg("Logic Programming", "http://www.cs.mu.oz.au/~ad", P).will bind P to a URL which is related to logic programming and linked to the speci�ed page.relevant pg/3 is de�ned as:relevant_pg(Subject, CurrURL, URL) :-m_id(CurrURL)#>link(_, URL),m_id(URL)#>h_text(Source),contains(Source, Subject).relevant pg/3 selects a link without concerning itself about the anchor. The text of theretrieved page is passed to the LogicWeb built-in contains/2 to see if it contains the sub-ject string. relevant pg/3 only relies on the predicates automatically added to modules byLogicWeb, and so should be more robust than similar pg/2.A weakness of the current LogicWeb implementation is the lack of backtracking at thetop-level of query evaluation: once an answer has been returned to the user it is not possibleto backtrack into the computation. For that reason, the usual LogicWeb coding style formultiple answers is to embed the top-level query in a setof/3 call, such as:?- setof(P, relevant_pg("Logic Programming","http://www.cs.mu.oz.au/~ad", P), Ps).An answer is returned to the user as a complete Web page whose formatting can be leftto the LogicWeb system, or can be speci�ed by built-in predicates as part of a program.2.3 LogicWeb ModulesThe LogicWeb module mechanism is fairly unsophisticated. A module can employ two no-tions of visibility, speci�ed as facts. The visible/1 predicate states the predicates which canbe utilised by a user from a form (e.g. visible(interested in/1)). The export/1 predicatestates those predicates which can be utilised by other modules (e.g. export(interested in/1)).A combination of these allows varying degrees of visibility. For instance, an exported predicatewhich is not visible is similar to a protected C++ member function.More work needs to be done on the module system, perhaps to bring it into line with theproposed ISO Prolog module standard [Hodgson 1996].State is crucial to most Web applications, and LogicWeb currently supports one of thetwo possible update mechanisms. LogicWeb programs can use: assert(m id(URL), Clause)and retract(m id(URL), Clause) to update the modules stored on the client-side. However,these are only copies of the original Web pages. Thus, once the current session �nishes, thestate changes will be lost. This drawback can be coded around by the use of �les on the client-side which exist beyond the session. However, this still excludes applications which mightwantto use the original module's state as global data or a communications link. Changing thisstate is complicated by security concerns: Web administrators are reluctant to allow programson their machines to be altered over the Internet.3 Search3.1 Limitations of Search EnginesThe Web allows readers to browse related information with ease, but the Web is too largeto be searched by manual browsing alone. This has led to a proliferation of search engines6

www.manaraa.com

which use keywords to search indexes (e.g. Lycos, AltaVista). These indexes are generatedby repeated o�-line traversals over the Web.Although these engines do a good job currently, they will become increasingly less accurateas the size of the Web increases. For instance, it will become ever harder to keep the indexesup-to-date, since it may take several weeks for a new site to be discovered, or for a changedpage to be revisited. Pages may also be deleted or moved, making their index entries incorrectfor a long period.A related problem will be the size of the indexes, which will become unmanageably largeas the Web continues to grow.One solution will be to limit the indexes to \important" items, such as home pages andcorporate sites. This will give rise to search tools which are tuned for speci�c domains, atrend which is already occurring1. A problem with these specialised engines is that severalmay need to be employed before a good answer is found, especially if the search item isdi�cult to categorise.Even at the moment, search engines can return poor results if the item being looked foris hard to de�ne using keywords. For instance, looking for pages containing paper citationsis di�cult to specify due to the variety of ways of describing a citation. Moreover, as notedin [Luke et al. 1996], keyword searches are based only on lexical or syntactic content. Thismeans that the search results are very sensitive to the choice of words used in the queries. Ifa document is indexed on a synonym of the query keyword, then the document will not beretrieved. In addition, a word often has di�erent meanings causing redundant information toappear in the results.3.2 LogicWeb for SearchingSearching the Web is one of the main application areas for LP. This is not due to the depth-�rst, backtracking behaviour of many LP languages, which is actually a disadvantage dueto the numerous loops in the Web's topology. The important LP features are the ability tospecify search heuristics using meta-level techniques, and to code specialised forms of search,such as breadth-�rst or resource-bounded. These approaches are possible in LogicWeb becausemodule IDs and the text of Web pages are �rst class entities.In section 3.3, a simple heuristic-free search tool is developed which illustrates many of thecoding techniques for Web search applications. Section 3.4 describes page type hierarchies,which are a way of describing the structure of the sites being searched. In section 3.5, a pagetype hierarchy is used to add heuristics to the search tool of section 3.3. Section 3.6 discussesa bounded breadth-�rst search utility, and section 3.7 explains how LogicWeb can be utilisedalongside existing search engines.3.3 Heuristic-free Searchfind ctt/3 uses a list of keywords and a starting URL to look for citations. A typical call is:?- find_ctt(["Web, "Logic Programming"],"http://www.cs.mu.oz.au/~ad", Citation).Hopefully, Citation will be bound to a citation containing the two keywords. find ctt/3is de�ned as:find_ctt(Keys, URL, Ctt) :-m_id(URL)#>h_text(Source),1See http://home.netscape.com/escapes/search/special guides.html.7

www.manaraa.com

contains_ctt(Keys, Source),extract_ctt(Keys, Source, Ctt).find_ctt(Keys, URL, Ctt) :-m_id(URL)#>link(_, NxtURL),find_ctt(Keys, NxtURL, Ctt).The �rst clause checks whether the text of the page at URL contains all the keywords bycalling contains ctt/2. If the goal succeeds, the citation is extracted from the page withextract ctt/3.The second clause is called when the contains ctt/2 goal fails. A link is chosen from thepage, and followed by recursively calling find ctt/3. This strategy relies on backtracking toreturn to the current page if the choice is unrewarded.contains ctt/2 checks every key against the page by calling the built-in contains/2:contains_ctt([], _).contains_ctt([Key|Ks], Source) :-contains(Source, Key),contains_ctt(Ks, Source).The main weakness of this code is the way that find ctt/3 blindly follows links in adepth-�rst manner. A link may go to the top of the same page or to a distantly related pageat a di�erent site. Search heuristics, such as those based on page type hierarchies, are neededto avoid these problems.3.4 Page Type HierarchiesA page type hierarchy is a way of describing a class of Web sites (e.g. academic departmentWeb sites, on-line newsletters, �nancial information pages) using relationships between cat-egories of pages. Page type hierarchies concentrate on the organisation of semantic contentat related Web sites instead of on the textual information at any given site. The bene�t ofthis approach is that a hierarchy can be used as a general purpose \map" of any site whichfalls into the class that the hierarchy represents.For instance, our study of computing department Web sites suggested that they usuallycontain pages of departmental information, research details, projects, project members, andresearchers. These page types can be labelled as dept, research, project, proj membersand researcher. Also, these types are related in a fairly standard way: a dept page is atthe top of the departmental web site, with the successive page types further down throughthe site hierarchy. One page is further down the hierarchy than another page if the chain ofhypertext links from the starting page to that page is longer.The ordering of the page types can be captured with composed of/2:composed_of(dept, research).composed_of(research, project).composed_of(project, proj_members).composed_of(proj_members, researcher).composed of/2 de�nes a general relationship, which will not hold in all cases. However,it is still a useful sketch of the typical hierarchy of a computing department's Web site. Itcan be drawn as in Figure 4.One subtlety of Figure 4 is that the lines joining the page types (which correspond to acomposed of/2 fact) will not usually map to a single hypertext link. For example, severallink dereferences may be required to get from a department page to a research page.Other hierarchies can be developed, which emphasize di�erent aspects of the site, such as:8

www.manaraa.com

�����������������
AAAAAAAAAAAAAAAAAresearcherproj membersprojectresearchdept

Figure 4: A Computing Department Page Type Hierarchy.composed_of(X, Y) :-has_part(X, Y).composed_of(X, Z) :-has_part(X, Y), composed_of(Y, Z).has_part(section(prog_langs), group(decl_langs)).has_part(group(decl_langs), project(mercury)).has_part(group(decl_langs), project(lygon)).has_part(section(prog_langs), project(lp_techniques)).:The page types are the terms section/1, group/1, and project/1, which are parameterizedwith the section, group, or project names.3.5 Heuristic Guided Searchfind ctt/3 of section 3.1 can now be rephrased to use a page type hierarchy for CS depart-ment sites, as well as some other heuristics. A query is formulated as before:?- find_ctt2(["Web, "Logic Programming"],"http://www.cs.mu.oz.au/~ad", Citation).The new parts of find ctt2/3 are commented:find_ctt2(Keys, URL, Ctt) :-likely_page(URL), % *new*m_id(URL)#>h_text(Source),contains_ctt(Keys, Source),extract_ctt(Keys, Source, Ctt).find_ctt2(Keys, URL, Ctt) :-m_id(URL)#>link(_, NxtURL), 9

www.manaraa.com

extension_of(NxtURL, URL), % *new*pt_related(URL, NxtURL), % *new*find_ctt2(Keys, NxtURL, Ctt).The �rst clause uses likely page/1 to test whether the page belongs to a page typewhich is likely to contain a citation. For example, a researcher page is very likely to hold acitation. likely page/1's de�nition is:likely_page(URL) :-m_id(URL)#>page_type(PT),is_ctt_pt(PT).is ctt pt/1 checks if the page type PT is one that might contain a citation. The page type/1goal may be evaluated against an actual predicate in the module, or by resorting to an ex-amination of keywords in the page's text.The second clause of find ctt2/3 employs a simple syntactic check in extension of/2to determine if NxtURL has an address derived from URL. For instance,http://www.cs.mu.oz.au/�ad/papers.html extends http://www.cs.mu.oz.au/�ad. Also,pt related/2 orders the two pages by comparing their page types to decide if the page typeof NxtURL is nearer to the researcher pages where citations are most likely to be located.pt_related(URL, NxtURL) :-m_id(URL)#>page_type(PT),m_id(NxtURL)#>page_type(NPT),composed_of(PT, NPT).composed of/2 accesses a page type hierarchy like the ones described in section 3.2.However, it will be more complex due to the need to accept pages which are not of aninteresting kind but may lead to an interesting page type. In addition, composed of/2 mustrecognise \bad" page types so that poor search paths can be eliminated. For instance, subtreesrelated to course content can be ignored when looking for citations.3.6 Resource-bounded Breadth-�rst SearchThe following bounded breadth-�rst search program shows how other types of search strategiescan be readily encoded in LogicWeb. This code will also be used as a basis for talking aboutsearch accuracy, and how the unpredictable nature of the Web can be accommodated.The top-level query is:?- collect(["http://www.cs.mu.oz.au/~ad"], ["logic", "AI", "Web"], 3, 20,[], Ps).The �rst argument is a list of starting addresses. Each page will be scored using a score page/3predicate which utilises the keywords in the second list. If a score greater than 3 (the thirdargument value) is obtained, then the page's links are collected and subsequently searched.All the collected pages are stored in a list which is eventually returned in Ps. The searchstops when 20 suitable pages (the fourth argument value) have been found, or there are nomore URLs to explore.collect/6 is de�ned as:collect(_, _, _, Max, Ps, Ps) :- % got enough addresseslength(Ps, Len), Len >= Max.collect([], _, _, _, Ps, Ps). % no more URLs to examine10

www.manaraa.com

collect([URL|ToVisit], Keys, PScore, Max, Ps, FPs) :-m_id(URL)#>h_text(Text),score_page(Keys, Text, Score),act_score(Score, URL, ToVisit, Keys, PScore, Max, Ps, FPs).collect/6 can terminate either when Max pages have been collected or when the URLs inthe ToVisit list have been exhausted. Otherwise, score page/3 is used to get a score for thepage, which is acted upon by act score/8:act_score(Score, CurrURL, ToVisit, Keys, PScore, Max, Ps, FPs) :-Score > PScore,setof(URL, [Label]^m_id(CurrURL)#>link(Label,URL), URLs), % get linksappend(ToVisit, URLs, ToVisit1), % storecollect(ToVisit1, Keys, PScore, Max, [URL|Ps], FPs).act_score(Score, _, ToVisit, Keys, PScore, Max, Ps, FPs) :-Score =< PScore,collect(ToVisit, Keys, PScore, Max, Ps, FPs).act score/8 actions depend on whether the page score is higher than the pass score (PScore).If it is higher then the page's links are appended to the end of the ToVisit list and thecollection process continues. By appending to the end, a breadth-�rst search is maintained.If the append/3 call was:append(URLs, ToVisit, ToVisit1)then a depth-�rst search would be carried out.The second clause of act score/8 discards the page since its score is too low, and thencontinues with the collection.collect/6 illustrates how various search strategies can be easily programmed becausemodule IDs and the text of Web pages are �rst class entities.The accuracy of the search can be increased by utilising structured information in thevisited pages. For instance, if we assume that Web pages generally contain interests/1,related/2, and the other predicates in the section 2.1 example , then the search performancecan be improved.For example, a new score predicate could utilise interested in/1:score_url(Keys, URL, Score) :-setof(K, (member(K,Keys), m_id(URL)#>interested_in(K)), Ks),length(Ks, Score).The score is the number of keywords of interest to the page author.Another extension would be to add the URLs in useful pages/2 to the ToVisit list ifthey were related to any of the search keys.When a page cannot be downloaded (e.g., when the server is down), the \#>" goal in thethird clause of collect/6 will fail. This can be avoided by replacing the goal with:mod_text(URL, Text)which is de�ned as:mod_text(URL, Text) :-m_id(URL)#>h_text(Text), !.mod_text(_, ""). 11

www.manaraa.com

A slightly more sophisticated version could cater for page retrieval failure by trying toretrieve the page from a mirror site:mod_text(URL, _, Text) :-m_id(URL)#>h_text(Text), !.mod_text(_, MirrorURL, Text) :-m_id(MirrorURL)#>h_text(Text), !.mod_text(_, _, "").This illustrates how LP non-determinism can re
ect the non-deterministic nature of the Web,where network failure, load e�ects, and servers are unpredictable [Connor 1996].3.7 LogicWeb and Existing Search EnginesEven though LogicWeb is very useful for coding search applications, better results are obtainedif it is used in conjunction with conventional search engines. In the CiFi system [Loke etal. 1996a; Han et al. 1996], a range of engines are used to �nd good starting points for aLogicWeb-based search for a citation. Such starting points include the author's home pageand the author's departmental home page. These pages are easy to de�ne using keywords,and are likely to be among the �rst few answers returned by conventional search engines.In addition, CiFi employs several search engines that are specialised for computer scienceinformation (e.g. the New Zealand Digital Library, and the CS bibliography collections at theUniversity of Karlsruhe).Once a starting point has been determined, a LogicWeb search program takes over tobrowse through the pages beneath it. A heuristic-free search would almost certainly go intoan in�nite loop, or head o� to an unrelated site. Instead, LogicWeb uses a variety of searchheuristics. Some are based on predicates like link/2 and related/2 described in section 2.1,which are generated automatically by LogicWeb or extracted by the search program throughparsing. CiFi also uses a page type hierarchy for a standard computing department Web siteto guide its search.One advantage of using a combination of search engines and browsing is its resilience tochange in the Web, since home pages and departmental pages rarely change and are readilyavailable through the conventional search engines. Also, the LogicWeb search component cancope with changes to pages so long as the underlying structure of the site is not altered toodrastically. Combining several engines is necessary since no one engine contains all the usefulcitation information.4 Lightweight Deductive DatabasesLogicWeb allows the Web to be viewed as a distributed collection of deductive databases,where each database is represented by a LogicWeb module (or Web page). This has a numberof advantages, the main one being that it o�ers a way of adding structured informationto the Web. Such information can be searched, combined, and extracted using familiartechniques from deductive databases. Also, LogicWeb databases can be reused in variousways by the application of its composition operators, although the interfaces of the databasesmust be carefully designed. These databases are lightweight in the sense that they lack thefunctionality of full database systems, such as transaction processing, and query optimisation.In section 4.1, we develop a simple set of lightweight deductive databases for researchinterests. This code is modi�ed in section 4.2 to be more distributed without requiring majorchanges to the query mechanism. In section 4.3, we discuss how LogicWeb's union operator12

www.manaraa.com

can improve the reusability of the code. Section 4.4 considers an important category of Webdatabases: those which cannot be downloaded over the Web, but can be queried on theirservers.More details on lightweight deductive databases can be found in [Loke et al. 1996b].4.1 Finding Research InterestsWe imagine that institutions store details of their academic interests in lightweight deductivedatabases. Each database contains facts of the form:rs_ints(name(First, Last), net_info(Login, HomePageURL), [Interest,...]).For instance, the database at the University of Melbourne might be:% research information at Uni. Melb.my_id("http://www.cs.mu.oz.au/ri.html").rs_ints(name(andrew, davison),net_info("ad@cs.mu.oz.au", "http://www.cs.mu.oz.au/~ad"),["Logic Programming", "AI", "Web", "OOP"]).:The database at Imperial College in London might be:% research information at Imperial.my_id("http://www.doc.ic.ac.uk/ri.html").rs_ints(name(keith, clark),net_info("klc@doc.ic.ac.uk", "http://www-lp.doc.ic.ac.uk/~klc"),["Logic Programming", "Agents"]).:In addition, we assume a central database at http://www.res.info/rinfo.html whichlists the URLs of all the institute databases. It contains facts of the form:institute(InstituteName, URL).Thus, it might hold:% institute info databasemy_id("http://www.res.info/rinfo.html").institute("Melbourne", "http://www.cs.mu.oz.au/ri.html").institute("Imperial", "http://www.doc.ic.ac.uk/ri.html").:An acad interest/2 predicate to �nd someone interested in a given topic can be expressedas:acad_interest(Topic, Name) :-m_id("http://www.res.info/rinfo.html")#>institute(_, URL),m_id(URL)#>rs_ints(Name, _, Interests),member(Topic, Interests). 13

www.manaraa.com

The rule chooses an institution, and uses its URL to obtain the research interests ofsomeone. If the speci�ed topic is one of the person's interests then his/her name is returned,otherwise backtracking will take place to look for other individuals, either at the same insti-tution or elsewhere.A problem with this code is that it will eventually load every institute database onto theclient-side. Fortunately, LogicWeb contains operators to discard modules, so that memoryusage can be kept under control.The following contacts/2 predicate returns the login IDs of all the people at a giveninstitution:contacts(Institute, Ls) :-m_id("http://www.res.info/rinfo.html")#>institute(Institute, URL),setof(Login, [N,U,I]^m_id(URL)#>rs_ints(N,net_info(Login,U),I), Ls).4.2 A More Distributed VersionThe institute databases can be subdivided so that the home page of each academic containstheir research details. This has the advantage that the information can be maintained by theacademics themselves.The structure of the central database does not change, but each institute's database nowcontains facts of the form:researcher(URL).For instance, the database for the University of Melbourne becomes:% research information at Uni. Melb.my_id("http://www.cs.mu.oz.au/ri.html").researcher("http://www.cs.mu.oz.au/~ad").researcher("http://www.cs.mu.oz.au/~swloke").:Each academic will now have a database in their home page which may contain a rangeof information in addition to their research interests. However, care must be taken that theold research details interface is maintained. For instance, Andrew Davison's home page mayhold:% research information for Andrew Davison.my_id("http://www.cs.mu.oz.au/~ad").rs_ints(name(F, L), net_info(Login, URL), Interests) :-name(F, L), login(Login),my_id(URL), interests(Interests).name(andrew, davison).login("ad@cs.mu.oz.au").interests(["Logic Programming", "AI", "Web", "OOP"]).:The increased distribution of information will have little e�ect on the predicates of theprevious section. For example, acad interest/2 would change to:14

www.manaraa.com

acad_interest(Topic, Name) :-m_id("http://www.res.info/rinfo.html")#>institute(_, URL),m_id(URL)#>researcher(RURL), % *new*m_id(RURL)#>rs_ints(Name, _, Interests),member(Topic, Interests).The extra level of distribution is re
ected in the extra module call.4.3 Reusability Using UnionA drawback of acad interest/2 is that it contains the chain of URLs which need to befollowed to �nd researcher information. This means that any changes to the chain requires achange to acad interest/2, as occurred in the last section.acad interest/2 would be more reusable if it did not contain this chaining information.For instance, assume the existence of the module:my_id("http://www.res.info/acadi.html").acad_interest(Topic, Name) :-rs_ints(Name, _, Interests),member(Topic, Interests).How can this be used, since it makes no reference to the modules where rs ints/3 is de�ned?The answer is to combine acadi.html with the relevant modules by using LogicWeb's unionoperator, lw union/1.For example, the URLs of researchers from the University of Melbourne can be collectedusing:melb_people(RUs) :-m_id("http://www.res.info/rinfo.html")#>institute("Melbourne", URL),setof(m_id(RURL), m_id(URL)#>researcher(RURL), RUs).The Melbourne researchers interested in logic programming can then be expressed as:?- melb_people(RUs),lw_union([m_id("http://www.res.info/acadi.html")|RUs])#>acad_interest("Logic Programming", Name).The lw union/1 version of \#>" creates a clause-wise union of the modules speci�ed in thelist, and so acad interest/2 will utilise the rs ints/3 facts of the Melbourne researchers.An advantage of this approach is that acad interest/2 can be used for searches over othersubsets of researchers without modi�cation. For instance, Imperial College people interestedin arti�cial intelligence can be found using:ic_people(RUs) :-m_id("http://www.res.info/rinfo.html")#>institute("Imperial", URL),setof(m_id(RURL), m_id(URL)#>researcher(RURL), RUs).?- ic_people(RUs),lw_union([m_id("http://www.res.info/acadi.html")|RUs])#>acad_interest("AI", Name).Several other LogicWeb composition operators are discussed in [Loke et al. 1996b].15

www.manaraa.com

4.4 Server-side DatabasesA possible disadvantage of LogicWeb for database manipulation is its use of client-side pro-cessing, which means that a database must be downloaded to the user's browser before it isevaluated. This reduces the server-side load of using the database, but there are still manyreasons why the processing might be restricted to the server-side. For instance, the databasemay be too large to be easily moved over the Web, or it may contain con�dential informationthat should not be made universally available. Commercial reasons may mean that the data-base cannot be freely sharable. Also, having a single, central database makes issues such astransaction control and maintaining a consistent state easier.In this section, we discuss LogicWeb's mechanism for accessing such server-side databases.This allows LogicWeb to be utilised with existing databases (and search engines, as brie
ydiscussed in section 3.7), and to be used as a front-end to these facilities.6 ?::� -�� ��scriptCGIanswerdbserver-side databaseanswerpost querymember(Name, Address, Email, Renew)db queryUserclient-sideform
Figure 5: A Server-side Database and its Interface.A typical server-side database and its interface is represented in Figure 5. A user posesa query to the database via a form on a Web page available from the database site. Theform details are transmitted to a server-side CGI script which is named within the form. Weshall assume that the script is located at http://www.cs.mu.oz.au/cgi-bin/db-query inthe following discussion. The form details are encoded as a POST method using the HTTPprotocol [Davison 1995]. Essentially, each �eld of the form is converted into a string of thetype ``field-name=field-value''. These are read by the CGI script which converts theminto a query suitable for the database. The script also converts the database answer into anappropriate Web format (usually a Web page) which is sent back to the client.In Figure 5, the database is assumed to contain Prolog facts of the form:member(Name, Address, Email, Renewal-Date).For example:member(name("Andrew Davison"), address("Univ. of Melbourne"),email("ad@cs.mu.oz.au"), renew(november, 1996)).16

www.manaraa.com

The forms interface contains four �elds labelled with \Name", \Address", \Email", and\Renew". The �elds can be �lled in or left blank (with the value \none"). These �eld namesand values are converted by the CGI script into suitable arguments in a goal, and appliedto the database. After the database engine has evaluated the query, the script converts theresults into a Web page for the user.Having outlined a likely server-side database, how can LogicWeb interact with it? It usesa variant of the \#>" operator:m_id(post(URL_of_CGI_script, List_of_Fields))#>Goal.For the scenario outlined above, a possible query would be:m_id(post("http://www.cs.mu.oz.au/cgi-bin/db-query",[field("Name", "none"), field("Address", "Univ. of Melbourne"),field("Email", "none"), field("Renew", "none")]))#>member(Name, _, Email, renew(_, 1997)).The post/2 term can be viewed as a speci�cation of the module against which the member/4goal will be evaluated. In this case, the retrieved module will contain all the members from theUniversity of Melbourne, and the goal will extract the name and e-mail address of someonewho should renew during 1997 (through backtracking all the Melbourne people in this situ-ation can be collected).This abstraction moves away from the notion of a POST message being sent to a server-sidedatabase, and utilises the familiar LogicWeb model of queries applied to retrieved modules.Similar mechanisms are also available for specifying modules created using the GET andHEAD methods in the HTTP protocol.5 ImplementationLogicWeb is implemented using the Common Client Interface (CCI) in the NCSA XMosaicBrowser [NCSA 1996]. Figure 6 shows the general structure of the system together with thesequence of steps taken when a user clicks on a hypertext link.The LogicWeb system has two components: WWWMain and a Prolog engine. WWWMain isabout 400 lines of C, and converts CCI output into a suitable format for the Prolog part,and also creates temporary local �les. The Prolog system is mostly written in SWI-Prolog,and is about 1600 lines long. Most of its code is for the LogicWeb meta-interpreter, butthere are also utilities for parsing and communicating with the Web. Some of the low-leveland/or speed critical features (such as string matching) are coded as C functions with Prologinterfaces.When the user clicks on a link (step 1), Mosaic gets the page from the Web (steps 2 and3). The page is not displayed but passed through the CCI to WWWMain (step 4). WWWMainsaves the page to a temporary local �le (step 5) and sends a \page downloaded" message viaa pipe to the Prolog engine process (step 6). The Web page is read in by the engine (step 7)and converted to a LogicWeb module which is stored inside the meta-interpreter. Often thetemporary page is modi�ed to include a forms interface for entering LogicWeb queries (step8). When any modi�cations are complete, the URL of the page is sent to Mosaic via the CCI(step 9), and a \done" message is transmitted to WWWMain (step 10) signalling that the Prologengine is ready for further work. Mosaic uses the URL it receives via the CCI to load anddisplay the temporary page (step 11).Figure 7 illustrates the other main form of user interaction with LogicWeb: the processingof a query. 17

www.manaraa.com

mosaic

click

display

get page

page

URL of temp page

URL of temp page

Prolog
WWWmain

save
page modify

read/parse

page

page

CCI

The Web

temp
Web
page

download
msg

done msg

1
2

3

4

5

6

7

8

9

10

11

User

Figure 6: The LogicWeb System and the steps followed after a user clicks on a link.The query is input via a form (step 1) and the goal is extracted by a CGI script (step 2).The goal is passed to the CCI (step 3) and onto WWWMain (step 4) and �nally to the Prologengine (step 5). If the goal uses a module that has already been downloaded (such as thecurrent page), then the meta-interpreter immediately evaluates the goal and stores the answerin a temporary Web page (step 8). The URL of this page is sent to Mosaic via the CCI (step9) and the page is displayed by Mosaic (step 11). At the same time, the Prolog system sendsa \done" message to WWWMain to signal its readiness for further work (step 10).A slightly more complicated sequence occurs if the LogicWeb goal requires a module thatis not presently on the client-side. In that case, the corresponding page is obtained from theWeb (steps 6 and 7), and the module is extracted before the goal is evaluated.The operational semantics of the meta-interpreter can be speci�ed easily by using a variantof the demo/2 predicate introduced in [Kowalski 1979; Bowen and Kowalski 1982]. Assumingthat demo/2 has the form:demo(ListofModules, Goals)then the processing of a m id(URL)#>Goal can be described with the code fragment:demo(Ms, [m_id(URL)#>Goal|Gs]) :-lookup(URL, Ms, Module),apply(Module, Goal),demo(Ms, Gs).demo(Ms, [m_id(URL)#>Goal|Gs]) :-web_load(URL, Module),apply(Module, Goal), 18

www.manaraa.com

mosaic

enter
query

display

URL of
ans page

URL of
ans page

Prolog
WWWmain

save answer
page

goal

CCI

The Web

temp
Web
page

goal

done msg

1

2

3

4
5

6

7

8

9

10

11

User

CGI script

forms
details

goal

get
page

page

Figure 7: The LogicWeb System and the steps followed after a user enters a query.demo([Module|Ms], Gs).lookup/3 is a simple list search predicate which uses the URL (the module's ID) as asearch key, and either returns the corresponding module or fails. If it is successful then Goalis evaluated against Module using apply/2, and demo/2 continues. If lookup/3 fails, thenweb load/2 in the second clause accesses the Web for the page with the address URL andconverts it to a module. Goal is applied to this module, and demo/2 recurses with the moduleadded to its module list.At a more abstract level, m id()#>G corresponds to the context switch operation foundin contextual LP [Monteiro and Porto 1989]. The goal is proved in the speci�ed moduleregardless of the current context: M ` GMs ` m id(M)#> GIt also corresponds to the operation [M]G in [Baldoni et al. 1993], where [M] is a modaloperator.6 Related WorkThe Web uses a client-server communications model, and we start by considering LP systemswhich are client-based (which includes LogicWeb), and then examine server-side solutions.Finally, we brie
y describe more expressive Internet-based LP systems, which utilise a peer-to-peer communications model. 19

www.manaraa.com

6.1 Client-side SystemsWebLog can refer to aspects of Web page structure (the title, links, etc) using LP goals thatutilise the page's URL as an identi�er [Lakshmanan et al. 1996]. However, WebLog doesnot treat pages as modules, and pages cannot contain arbitrary LP code, or be composedtogether.Several LP libraries allow pages to be downloaded from the Web [Bonnet et al. 1996;Cabeza and Hermenegildo 1996]. These packages also contain tools for parsing the text andextracting information. With these tools, it would be relatively easy to support a fragmentof LogicWeb. However, these packages do not contain important browser capabilities, suchas being able to display pages, capture clicks on hypertext links, or accept queries from Webforms. Aside from these libraries, any Prolog system with a TCP/IP sockets library, or theability to invoke a utility like telnet, can retrieve pages o� the Web.Java is a popular client-side programming language, and is being used with Prolog invarious ways. An interesting interpreter for a subset of Prolog, called W-Prolog, has beenwritten in Java [Winiko� 1996]. Amzi! Prolog has a Java class interface to its Prolog system[Amzi! Prolog 1996]. MINERVA is a compiler for Prolog which generates Java byte-codes [IFComputer 1996], and a similar approach is used in the jProlog addition to BinProlog [Tarau1996]. Another technique is to link Java to a Prolog engine through its sockets class [Ferguson1996]. Interestingly, he rejected this approach due to �rewall restrictions on non-HTTP tra�c.A drawback with using Java is its restrictive security features. For example, it is quitedi�cult to store information between sessions since �le creation is usually prohibited. Also,Java does not normally allow pages to be downloaded from arbitrary Web sites [Lemay andPerkins 1996].6.2 Server-side SystemsThere are several server-side approaches for using LP in the Web.As mentioned earlier, CGI is a popular server-side programming interface, which allowsinformation fromWeb forms to be passed to programs. There are several libraries for writingProlog programs which can process information from CGI input, and generate suitable replies(typically, new Web pages) [Amzi! Prolog 1996; Cabeza et al. 1996; Cabeza and Hermenegildo1996; Carpenter 1996; Naish 1995]. The basic idea is captured by Figure 8.Examples include: WebLS, a tool for building help systems [Sehmi and Kroening 1996],Bob Carpenter's theorem prover (http://macduff.andrew.cmu.edu/cgparser/), and LeeNaish's ICLP'97 submissions form (http://www.cs.mu.oz.au/�lee/iclp97/submitreg.html).The CGI script is newly invoked for each query from a client, which can be a problem ifthe script has to load very large support software. Much of this overhead should be avoidableby the use of shared dynamically linked libraries, and by the utilisation of compilers whichgenerate fast object code and small executables. Also, it is far from clear whether the poorperformance of a particular Prolog CGI script is due to its coding in Prolog, or because ofnetwork and machine overheads, and/or the slowness of CGI.A related issue is that the client-server model allows a server to process several clientsconcurrently, which implies that several invocations of the same script may need to be runningsimultaneously. This may not be practical because of the size of the system, and also makeschanges to shared resources more complicated.Another server-side solution is to separate query processing into two parts: a light-weightCGI script which acts as an interface to a separate heavy-weight task process. A key featureof the task process is that it is continually running, and so only needs to be loaded once. Inthe context of LP, this process would be a Prolog engine or logic database. The invoked CGI20

www.manaraa.com

� - 6 ?�� ��browserclient �� �
serverPrologwritten inCGI scriptUser form inputinvoke withansweranswerform details
Figure 8: Using Prolog CGI Scripts.interface scripts communicate with the task process by using sockets. The overall approachis shown in Figure 9.

� - processtaskPrologCGIscriptinterface linksocket� - 6 ?�� ��browserclient �� �
serverUser form inputinvoke withansweranswerform details
Figure 9: Separating the Interface and Task Processes.The Announce system uses this technique to implement its electronic calendar of events[L�uttringhaus-Kappel and Schulz 1996]. The task process is coded in ECLiPSe.This approach is also used in the EMRM knowledge base of medical records, but it utilisesthe OR-parallel Aurora system to process multiple queries at once [Szeredi at al. 1996].Don Ferguson has implemented a �nancial database access system using Quintus Prologand its TCP library (see http://edgarscan.tc.pw.com/). The user interface is a Java appletwhich communicates with the CGI interface script.The Pillow/CIAO library supports a higher level communications layer between the in-terface and task processes based on Active modules. Each invocation of the interface scriptcommunicates with the task process as if it was calling a module [Cabeza et al. 1996]. The21

www.manaraa.com

authors speculate on using &-Prolog/CIAO to parallelise their Prolog engine.Although this server-side technique solves the problem of multiple invocations of poten-tially large task processes, it still leaves unresolved how to support multiple queries on ashared resource. This remains an issue even when parallel languages are used. Another prob-lem, addressed in the EMRM system, is how to deal with lengthy browser interactions, whichrequire the task process to suspend while the user enters further details.A third server-side technique is to completely replace the traditional Web server by soft-ware which combines the functionality of a server with the particular task. This is illustratedin Figure 10. answerquery �� ��LP serverdedicated� -�� ��browserclientUser Figure 10: A Dedicated LP Server.A notable LP solution in this style is the ECLiPSe HTTP server library, which allows abasic server framework to be customized for di�erent communication protocols [Bonnet etal. 1996]. Indeed, the major advantage of this technique is the way that the server can bespecialised for speci�c applications and communication modes. The main drawback is thelarge amount of work required to implement a fully featured server with concurrency control,error handling, administrative tools, and so on.This approach is also used in the Munich Rent Advisor, which coded its server withECLiPSe (but without the help of the ECLiPSe HTTP server library) [Fr�uhwirth and Ab-dennadher 1996].6.3 Peer-to-Peer SystemsThe Web model is based on clients and servers, which makes it di�cult to code systemswhere the communication is between entities with equal status. In particular, it discouragesthe implementation of multi-agent systems where it is essential that all the participants cancommunicate on equal terms.For this reason, some LP systems utilise the Internet as their underlying communicationlayer. Two languages in this category are Distributed Oz [Haridi and Van Roy 1996] andApril [McCabe and Clark 1995]. Both use message passing and have the ability to move codebetween machines. April is not strictly speaking a LP language, but has borrowed ideas fromLP, and its macro language can be used to support more Prolog-like behaviour [Clark et al.1996].SICStus Prolog and its objects package are being used to develop an Internet-based tradingapplication called MarketSpace [Eriksson et al. 1996]. However, the authors note the need fora language that supports richer notions of concurrency, and features such as persistence.The blackboards in Multi-BinProlog are the basis of LogiMoo, a high-level kernel for Inter-net collaborative work [Tarau and De Bosschere 1996]. It uses local and virtual blackboardsto hide the underlying network. Similar approaches may be possible in other LP languageswith Linda-style blackboards, such as SICStus Prolog [SICStus 1996] and &-Prolog/CIAO22

www.manaraa.com

[Hermenegildo and Greene 1991]. There is a commercial product along these lines, calledUbique Doors, which initially used FCP [Shapiro 1994]. However, it is now coded in C++.7 SummaryThere are three key advantages of using LP for Web programming.� LP allows the Web to be viewed more abstractly. LogicWeb encourages Web pages andhypertext links to be reinterpreted as modules and relationships. The practical resultis that programmers do not need to concern themselves with lower-level issues like pageretrieval and parsing.� LP is particularly suitable for coding important classes of Web applications. We havecurrently identi�ed three domains: information structures, search, and parsing. Theease of coding structured information (e.g. as in a database), and manipulating it, is instark contrast to the e�ort required to do the same in imperative or object-oriented lan-guages. Simple search applications using backtracking can be coded in a few lines, andmore robust versions can utilise heuristics coded with familiar LP techniques. Parsingis essential to most applications, and plentiful techniques are available (e.g. DCGs andother logic grammars).� LP supports meta-programming. Meta-level reasoning is essential for making a program\intelligent" in the sense that it can reason about its own actions, and respond tochanges in its environment (the Web) [Kowalski 1996]. Meta-programming facilitatesthe manipulation and composition of LogicWeb modules using an approach similar tothat described in [Brogi et al. 1994b], except that the modules come from the Web.These techniques are possible because module IDs and Web pages are represented as�rst class entities in LogicWeb.Meta-programming makes interpreters easier to build, o�ering the potential for Lo-gicWeb modules to store information in domain-speci�c languages (e.g. as HTML metatags, VRML).Meta-level capabilities are also important for the implementation of LogicWeb's infer-ence engine, and for the speci�cation of its operational semantics. The simplicity of thisencoding makes it easier to specify security restrictions.Future Work. LogicWeb must be able to model the changing nature of the Web, and so weshall be exploring the use of temporal operators to capture the notion of repeatedly updatingand di�erentiating between versions of a module.Since LogicWeb interprets a click upon a hypertext link as a goal, it is straightforwardto enhance the meaning of the link. A large body of work exists in the hypertext literatureon various forms of link behaviour, which might be usefully reinterpreted in the context ofLogicWeb [CACM 1995].Our work on lightweight deductive databases can be extended in a number of directions,including support for server-side updates, and the investigation of composition operators suchas intersection and inheritance.Further work is required to make LogicWeb more secure. The meta-interpreter imple-mentation of LogicWeb's inference engine means that it is relatively easy to control whichgoals are evaluated. A more problematic aspect is resource control, where code should beprevented from going into an in�nite loop, and from downloading modules until memory is23

www.manaraa.com

exhausted. Resource bounded inferencing, strong typing, and partial evaluation may be ofuse.LogicWeb's reliance on NCSA XMosaic makes the system di�cult to distribute. We mayrecode the system as a Netscape plug-in to make it more portable.The operational semantics of LogicWeb has only been partially de�ned as yet. However,we hope to draw upon the work on the semantics of structured LP [Brogi et al. 1994a; Brogiet al. 1994b; Bugliesi et al. 1994] in order to develop a fuller semantics.Acknowledgements. We are grateful to Leon Sterling for valuable comments on a previousversion of this paper.ReferencesAmzi! Prolog. 1996. \Internet and Web Tools", http://www.amzi.com/internet.htm.Baldoni, M., Giordano, L., and Martelli, A. 1993. \A Multimodal Logic to De�ne Modulesin Logic Programming", In Proc. of the Int. Symp. on Logic Programming, D. Miller (ed.),MIT Press, pp.473-487.Bonnet, Ph., Bressan, S., Leth, L., and Thomsen, B. 1996. \Towards ECLiPSe Agentson the Internet", In Proc. of the 1st Workshop on Logic Programming Tools for InternetApplications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-SLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.1-9. Alsoat http://www.cs.mu.oz.au/�ad/lp-internet/eclipse/ea.html.Bowen, K. and Kowalski, R.A. 1982. \Amalgamating Language and Meta-language", InLogic Programming, K.L. Clark and S. Tarnlund (eds.), Academic Press, pp.153-172.Brogi, A., Mancarella, P., Pedreschi, D., amd Tutini, F. 1994a. \Modular Logic Program-ming", ACM Trans. on Programming Languages and Systems, Vol. 16, No. 4, pp.1361-1398.Brogi, A., Renso, C., and Turini, F. 1994b. \Amalgamating Language and Meta-Languagefor Composing Logic Programs", In Proc. of GULP-PRODE 94 Joint Conference on Declar-ative Programming, Peniscola, Spain.Also at ftp://ftp.di.unipi.it/papers/turini/PRODE94.ps.gz.Bugliesi, M., Lamma, E., and Mello, P. 1994. \Modularity in Logic Programming",Journal of Logic Programming, Vol. 19 & 20, May, pp.443-502.Cabeza, D. and Hermenegildo, M. 1996. \html.pl: An HTML Package for (C)LP Sys-tems", Spain, March. Available from http://www.clip.dia.fi.upm.es/miscdocs/.Cabeza, D., Hermenegildo, M., and Varma, S. 1996. \The PiLLoW/CIAO Library forINTERNET/WWW Programming", In Proc. of the 1st Workshop on Logic ProgrammingTools for Internet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo(eds.), JICSLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September,pp.43-62. Also at http://www.cs.mu.oz.au/�ad/lp-internet/pillow/lpnet3.html.CACM 1995. Special Issue on \Designing Hypermedia Applications", Comm. of the ACM,Vol. 38, No. 8, August.Carpenter, B. 1996. \A Prolog-Based CGI Handler",http://macduff.andrew.cmu.edu/cgparser/prolog cgi.html.Clark, K.L., Skarmeas, N., and McCabe, F.G. 1996. \Agents as Clonable Objects withKnowledge-base State", In Proc. of the 2nd Int. Conf. on MultiAgent Systems. Also athttp://www-lp.doc.ic.ac.uk/�klc/mob agents.html.Connor, R. 1996. \An Overview of the Aims of the Hippo Project". Available fromhttp://grappa.dcs.st-and.ac.uk/HIPPO/overview.ps.24

www.manaraa.com

Davison, A. 1995. \Programming with HTML Forms", Dr. Dobb's Journal, Vol. 20, No.6, June, p.70-75.Eriksson, J., Finne, N., and Janson, S. 1996. \Information and Interaction in MarketSpaceand their Implementation in Prolog", In Proc. of the 1st Workshop on Logic ProgrammingTools for Internet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo(eds.), JICSLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September,pp.125-137. Also at http://www.cs.mu.oz.au/�ad/lp-internet/ms/marketspace.html.Ferguson, D. 1996. \Linking a Prolog Program into an HTTPD", Posting tocomp.lang.prolog, November 7th.Fr�uhwirth, T. and Abdennadher, S. 1996. \The Munich Rent Advisor", In Proc. of the 1stWorkshop on Logic Programming Tools for Internet Applications, P. Tarau, A. Davison, K. DeBosschere, and M. Hermenegildo (eds.), JICSLP'96: Joint Int. Conf. on Logic Programming,Bonn, Germany, September, pp.11-27. Also athttp://www.cs.mu.oz.au/�ad/lp-internet/lpnet5/lpnet5.html.Han, Y., Loke, S.W., and Sterling, L. 1996. \Agents for Citation Finding on the WorldWide Web", Dept. of Computer Science, Univ. of Melbourne, Tech. Report 96/40. Availablefrom http://www.cs.mu.oz.au/tr db/mu 96 40.ps.gz.Haridi, S., and Van Roy, P. 1996. \An Overview of the Design of Distributed Oz", In Proc.of the Multi-Paradigm Logic Programming Workshop, M.M.T Chakravarty, Y. Guo, and Y.Ida (eds.), JICSLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September,pp.13-24.Hermenegildo, M. and Greene, K. 1991. \The &-Prolog System: Exploiting IndependentAnd-Parallelism", New Generation Computing, Vol. 9, No. 3,4, pp.233-257.Hodgson, J. 1996. \Programming Language Prolog Part 2, Modules", Committee Draft,May 31st. Available from http://www.sju.edu/�jhodgson/x3j17.html.HTML 3.2 Reference Speci�cation. 1996. W3C Proposed Recommendation.http://www.w3.org/pub/WWW/TR/PR-html32-961105.IF Computer. 1996. MINERVA Documentation,http://www.ifcomputer.com/StrategicWeb/MINERVA/home en.html.Kowalski, R.A. 1979. Logic for Problem Solving, Elsevier, New York.Kowalski, R.A. 1996. \Using Meta-Logic to Reconcile Reactive with Rational Agents",PAAM 96: The Practical Applications of Intelligent Agents and Multi-Agent Technology,London, April, pp.361-374.Lakshmanan, L.V.S., Sadri, F., and Subramanian, I.N. 1996. \A Declarative Approachto Querying and Restructuring the World-Wide-Web", Post-ICDE Workshop on ResearchIssues in Data Engineering (RIDE'96), New Orleans, February. Available asftp://ftp.cs.concordia.ca/pub/laks/papers/ride96.ps.gzLemay, L. and Perkins, C. 1996. Teach Yourself Java in 21 Days, Sams.net Publishing.Loke, S.W. and Davison, A. 1996. \Logic Programming with the World-Wide Web", InProc. of the 7th. ACM Conf. on Hypertext, ACM Press, March, pp.235-245.Loke, S.W., Davison, A., Sterling, L. 1996a. \CiFi: An Intelligent Agent for CitationFinding on the World Wide Web", PRICAI'96: 4th Paci�c Rim Int. Conf. on Arti�cialIntelligence, Cairns, Australia, August.Loke, S.W., Davison, A., and Sterling, L. 1996b. \Lightweight Deductive Databases onthe World-Wide Web", In Proc. of the 1st Workshop on Logic Programming Tools for InternetApplications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JICSLP'96:Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.91-106. Also athttp://www.cs.mu.oz.au/�ad/lp-internet/lwddbs/lwddbs.html.Luke, S., Spector, L., and Rager, D. 1996. \Ontology-Based Knowledge Discovery on theWorld Wide Web", In Proc. of the Workshop on Internet-based Information Systems, AAAI-25

www.manaraa.com

96, Portland, Oregon, USA.Also at http://www.cs.umd.edu/projects/plus/SHOE/aaai-paper.html.L�uttringhaus-Kappel, S. and Schulz, D. 1996. \A Calendar of Events { Architectureand Experiences" In Proc. of the 1st Workshop on Logic Programming Tools for InternetApplications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-SLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.29-41. Alsoat http://www.cs.mu.oz.au/�ad/lp-internet/announce/announce.html.McCabe, F.G. and Clark, K.L. 1995. \April { Agent Process Interaction Language", InIntelligent Agents, M. Wolldridge and N. Jennings (eds.), LNAI, Vol. 890, Springer-Verlag.Monteiro, L. and Porto, A. 1989, \Contextual Logic Programming", In Proc. of the 6thInt. Conf. on Logic Programming, G. Levi and M. Martelli (eds.), Lisbon, Portugal, TheMIT Press, pp. 284-299.Naish, L. 1995. \HTML Forms Interface to NU-Prolog",http://www.cs.mu.oz.au/�lee/src/forms/index.html.NCSA. 1996. NCSA XMosaic and CCI Documentation,http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/ andhttp://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html.Reynolds, M.C. and Wooldridge, A. 1996. Special Edition Using JavaScript, QUE.Sehmi, A. and Kroening, M. 1996. \WebLS: A Custom Prolog Rule Engine for ProvidingWeb-Based Tech Support", In Proc. of the 1st Workshop on Logic Programming Tools forInternet Applications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.),JICSLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.107-123.Also at http://www.cs.mu.oz.au/�ad/lp-internet/amzi/lspap.html.Shapiro, E. 1994. \Enhancing the WWW with Co-Presence", In Proc. of the 2nd Int.Conf. on the WWW.SICStus. 1996. SICStus Prolog Documentation, http://www.sics.se/sicstus.html.Szeredi, P., Moln�ar, K., and Scott, R. 1996. \Serving Multiple HTML Clients from aProlog Application", In Proc. of the 1st Workshop on Logic Programming Tools for InternetApplications, P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JIC-SLP'96: Joint Int. Conf. on Logic Programming, Bonn, Germany, September, pp.81-90. Alsoat http://www.cs.mu.oz.au/�ad/lp-internet/iqsoft/multiple.html.Tarau, P. 1996. BinProlog 5.25 Documentation, System available fromhttp://clement.info.umoncton.ca/�tarau.Tarau, P. and De Bosschere, K. 1996. Virtual World Brokerage with BinProlog and Nets-cape", In Proc. of the 1st Workshop on Logic Programming Tools for Internet Applications,P. Tarau, A. Davison, K. De Bosschere, and M. Hermenegildo (eds.), JICSLP'96: Joint Int.Conf. on Logic Programming, Bonn, Germany, September, pp.63-80. Also athttp://www.cs.mu.oz.au/�ad/lp-internet/lpnet10/art.html.Winiko�, M. 1996. W-Prolog 1.0 Documentation, System available fromhttp://www.cs.mu.oz.au/�winikoff/wp.
26

